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Cdc42 is required for PIP,-induced actin polymerization and early

development but not for cell viability

F. Chen*t, L. Ma*S, M.C. Parrini*¥, X. Mao'°, M. Lopez*¥), C. Wu*t,
P.W. Marks?, L. Davidson®, D.J. Kwiatkowski?, T. Kirchhausen**, S.H. OrkinT°,
F.S. Rosen*T, B.J. Mayer*¥, M.W. Kirschner* and FW. Alt*t°

Background: Cdc42 and other Rho GTPases are conserved from yeast to
humans and are thought to regulate multiple cellular functions by inducing
coordinated changes in actin reorganization and by activating signaling
pathways leading to specific gene expression. Direct evidence implicating
upstream signals and components that regulate Cdc42 activity or for required

roles of Cdc42 in activation of downstream protein kinase signaling cascades is

minimal, however. Also, whereas genetic analyses have shown that Cdc42 is
essential for cell viability in yeast, its potential roles in the growth and
development of mammalian cells have not been directly assessed.

Results: To elucidate potential functions of Cdc42 mammalian cells, we used
gene-targeted mutation to inactivate Cdc42 in mouse embryonic stem (ES)
cells and in the mouse germline. Surprisingly, Cdc42-deficient ES cells
exhibited normal proliferation and phosphorylation of mitogen- and stress-
activated protein kinases. Yet Cdc42 deficiency caused very early embryonic
lethality in mice and led to aberrant actin cytoskeletal organization in ES cells.
Moreover, extracts from Cdc42-deficient cells failed to support
phosphatidylinositol 4,5-bisphosphate (PIP,)-induced actin polymerization.

Conclusions: Our studies clearly demonstrate that Cdc42 mediates
PIP,-induced actin assembly, and document a critical and unique role for
Cdc42 in this process. Moreover, we conclude that, unexpectedly, Cdc42 is
not necessary for viability or proliferation of mammalian early embryonic cells.
Cdc42 is, however, absolutely required for early mammalian development.
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Background

The Rho G'TPases are a subgroup of the Ras superfamily of
20-30 kDa G'TP-binding proteins that includes Rho, Rac
and Cdc42. These proteins are ubiquitously expressed from
yeast to humans, conserved in primary structure and 50-55%
homologous to each other. Rho G'TPases act as binary mole-
cular switches by cycling between inactive GDP-bound and
active G'TP-bound forms to regulate various cellular func-
tions [1-3]. Microinjection and overexpression studies in
mammalian cells have revealed roles for Rho, Rac and
Cdc42 in actin cytoskeleton remodeling in response to extra-
cellular stimuli [1,2]. Increasing evidence has also suggested
that Rho G'I'Pases have important roles in diverse cellular
processes such as transcriptional regulation, cell-cycle pro-
gression, membrane trafficking, chemotaxis and axonal
guidance [1,3-12]. Furthermore, potential developmental
roles of Rho GTPases have been implicated from genetic
analyses of Drosophila and Caenorhabditis elegans, and from
transgenic mouse studies [13].

Cdec42 was discovered as an essential gene in Saccharomyces
cerevisiae that is required for budding and establishment of

cell polarity [14-16]. In fibroblasts, overexpression of acti-
vated Cdc42 leads to filopodia formation, whereas acti-
vated Rac and Rho induce lamellipodia and stress fibers
respectively [17-19]. A hierarchical relationship has been
proposed in which Cdc42 is a proximal mediator that
signals to Rac [1,19]. Recently, N-WASP, a homolog of the
Wiskott—Aldrich syndrome protein (WASP), has been
shown to provide a critical link between Cdc42 signaling
and actin polymerization [20-25]. Information on
upstream signals and components that regulate Cdc42
activity with respect to actin assembly is limited, however.
Furthermore, whereas Cdc42 and Rac, but not Rho, have
been implicated in the stress-activated protein kinase sig-
naling cascades, the physiologic significance of these find-
ings has not been assessed [3,7,26,27].

Results and discussion

Cdc42 deficiency results in early embryonic lethality

To directly assess the physiological consequences of Cdc42
deficiency, we inactivated Cde42 in the mouse germline.
The murine and human Cdc42 genes contain six coding
exons (Figure 1a) [28,29]. The first Cdc42 coding exon
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Figure 1
Targeting of murine Cdc42. (a) The genomic
locus of the murine Cdc42 gene is shown at @ Wild-tvoe | 1kb
the top; open boxes indicate exons identified. fid-type locus 2 kb —_
The knock-out vector to replace the first
, E1 E2 E3E4 ESa E5b /
coding exon of Cdc42 contains a PGK-Neo 5 | MM N, EcoRI I D—‘:I—‘s
cassette flanked by /oxP sites (triangles), a = - .
4.5 kb 3homology region (Hpal—Hpal EcoRI Xbal BamHI Hpal Hpal Hindlll
fragment) and a 2.5 kb 5'-homology region
(Xbal-BamHI fragment). Note that both EcoRlI >< ><
sites in the wild-type locus lie outside the Targeting construct E2
homologous recombination region. *EcoRl .l Neo F
indicates a new restriction site brought in Xbal BamHI*EcoRIHoal Hoal
upon gene targeting and is used to p P
distinguish the knock-out allele from the
wild-type allele. The targeted alleles with Targeted locus 6 kb
(targeted locus) or without (Neo-deleted) the E2 EcoRI E3E4
Neo marker (before or after Cre-deletion) are \ ! Neo | SR 0
shown at the bottom. Also shown are two .
. EcoRIl Xbal BamHFEcoRI Hpal Hpal Hindlll
probes used for Southern analysis: the _ —
3'-probe (Hpal-Hindlll) is outside the Neo probe 3'-probe
3'-homology region; the Neo probe
(Pstl—BamHI) is |.nS|de the coding region of Neo-deleted locus
the neomycin-resistance gene. (b) Southern 0 kb
analysis (EcoRl digest, 3'-probe) of tail DNA E2  EcoRIE3E4
from mice carrying Cdc42 wild-type (WT, w ! % D L1 D’D
+/+), single knock-out (KO, +/-) and )
Neo-deleted (+/N-del) alleles. (c) PCR assay EcoRl  Xbal Hpal Hpal Hindlll
for genotypes of individual blastocysts derived
from intercrosses of heterozygous Cdc42 (b) 3 ©
knock-out mice. X %’b
YN VXN W WY
kb b A X X xt s
12 _ ey | WT P
10 Neo-deleted 450 — KO
350 — WT
6 —fil . —KO
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encodes the amino-terminal domain of the Cdc42 protein,
which binds G'I'P and the catalytic magnesium ion. This
domain is essential for G'TPase activity and is also respon-
sible for the interactions between Cdc42 and target pro-
teins [30-32]. To generate a null mutation of Cdc42, we
used homologous recombination to replace the first coding
exon with a /oxP-flanked PGK-Neo cassette in TC1 ES
cells. The /oxP sites ensure that the neomycine-resistance
selection marker (Neo) can be deleted via Cre-mediated
recombination to ge?erate a ‘clean’ deletion [33]. Multiple
independent Cdc42”” ES clones were identified by South-
ern analyses and three were used to generate chimeric
mice that were bred for germline transmission.

Crosses of Cdc42+~ mice revealed that Cdc42 deficiency
causes early embryonic lethality. Thus, no Cde42-- off-
spring were born and no Cde42-~ embryos were recovered
as early as embryonic stage 7.5 (E7.5) (Figure 1b,
Table 1). Intercrosses between Neo-deleted Cded2+-
mice also failed to yield homozygous mutant embryos
(data not shown). Histological analyses of all uterine

decidua recovered at E5.5 from timed matings of Cdc42+~
mice revealed that approximately 25% of the embryos
were smaller than normal, disorganized in structure and
largely lacking embryonic primary ectoderm (Figure 2a,b).
By E6.5, a similar proportion had largely degenerated
(Figure 2c,d). Statistically, the defective embryos are
likely to be Cdc42 deficient as analyses of embryos
derived from intercrosses of the wild-type mice with the
same genetic background revealed that less than 5% were
abnormal (Figure 2, and data not shown). Recently, Racl
was also found to be required for embryonic develop-
ment, but lethality occurred at a slightly later stage [34].
We note, however, that our developmental findings do
not rule out the possibility that absolute Cdc42 deficiency
could result in even earlier lethality, as it is conceivable
that maternal Cdc42 might fulfill early developmental
functions in Cde42-~ embryos. In fact, given that the
Cde42 null mutation is cell lethal in yeast, and that only
one mammalian homolog has been reported, it seemed
possible that complete absence of Cdc42 might even
cause lethality of murine cells.
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Figure 2

Figure 3

Current Biology

Histological examination of in utero embryos from matings of Cdc42+/-
mice. The uteri of female Cdc42+/~ mice were dissected at (a,b) E5.5
and (c,d) E6.5 after mating with Cdc42+/- males. Sagittal sections of
6-7 um thickness were taken for all uterine decidua from each litter,
followed by staining with hematoxylin and eosin (HE). Four litters were
examined at E5.5; 7 out of 32 embryos were phenotypically abnormal
as shown in the column labeled Mutant (presumptive Cdc42-/~
mutants). Four litters were examined at E6.5; 6 out of 27 embryos
were presumptive Cdc42~/~ mutants. (a,c) Presumptive wild-type and
heterozygous Cdc42 embryos. ee, Primary embryonic ectoderm; pe,
parietal endoderm; ve, visceral endoderm; xe, primary extra-embryonic
ectoderm. Note the distinct differentiated cell layers and polarized
organization of ee. (b,d) Presumptive Cdc42-/- mutant embryos. de,
Dead cells. Note the initial differentiation of primary ectoderm (ec) and
primary endoderm (en), but the disorganized primary ectoderm (at
E5.5) and degeneration of the embryos (at E5.5 and E6.5). The scale
bars represent 50 um.

Cdc42 is not required for viability, proliferation or MAP
kinase activation in ES cells

To address the cell lethality question, we first attempted
to generate Cde42-~ ES cells by culturing Cde42+- ES cells
in increased concentrations of G418 and by re-targeting
the second allele after Cre deletion of the Neo marker
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Generation and characterization of Cdc42-~ ES cells. (a) Southern
hybridization (EcoRI digest, 3'-probe) of ES cell lines derived from
individual Cdc42+*, Cdc42+'- and Cdc42~'~ blastocysts. (b) Western
blotting analysis of Cdc42++ and Cdc42-/- ES cell lines. Anti-Cdc42
(Santa Cruz Biotechnology) is a rabbit polyclonal antibody specifically
against a peptide mapping near the carboxyl terminus of Cdc42,
whereas anti-Rac (clone 23A8, Upstate Biotechnology) and anti-RhoA
(clone 26C4, Santa Cruz Biotechnology) are both mouse monoclonal
antibodies. (¢) Growth rate of ES cell lines: Cdc42+/+ (solid line with
filled diamonds) and Cdc42-/- (dashed line with open circles). The
early-passage ES cells were grown in complete ES medium containing
LIF. One million cells were plated in each well of a six-well plate with
feeder cells. Two independent cell lines of Cdc42++ and Cdc42-/~
were used, and three wells were plated in parallel for each cell line. At
each passage (every 3 days when the culture reached 70-80%
subconfluency) ES cells were trypsinized and counted. Data represent
one of two independent experiments with similar results.

from Cdc42+- ES cells (data not shown). Despite extensive
efforts, however, no Cdc427~ ES cells could be derived by
these approaches. Next, we used a PCR-based genotyping
strategy to demonstrate that Cdc42-~ blastocysts were
viable and visually normal at E3.5. Morcover, when indi-
vidually cultured on gelatin-coated dishes, Cde42-- blasto-
cysts grew and differentiated 77 vizro in a manner similar to
that of wild-type blastocysts (Figure 1c, Table 1). The via-
bility of Cdr42-~ blastocysts suggested the possibility of
deriving Cde42-- ES cells directly [35]. By culturing single
blastocysts on feeder cells, we succeeded in obtaining
Cdc42-- ES cells, as confirmed both by Southern
(Figure 3a) and western blotting analyses (Figure 3b). As
predicted for a null mutation, the Cde42-~ ES expressed
no detectable Cdc42 protein, whereas levels of several
other Rho G'TPases tested for, including Racl and RhoA,
remained comparable to those of wild-type ES cells
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Table 1
Genotypes of neonates and embryos derived from Cdc42+/~ intercrosses.
Stage Total +/+ +/- —/- Resorbed
Full term 86 37 49 0 -
E13.5 36 9 15 0 12
E9.5 30 8 15 0 7
E8.5 21 5 11 0 5
E7.5 30 6 14 0 10
E3.5

Blastocyst 43 9 24 10 -

Outgrowth 29 7 17 5 -

Timed breeding of heterozygous Cdc42 mice was set up in a
pathogen-free facility. Neonates and embryos were harvested
at indicated time. Blastocyst, freshly isolated E3.5

(Figure 3b, and data not shown). In subsequent studies,
we focused on two ES cell lines of each genotype derived
from littermate E3.5 embryos. Strikingly, we observed no
gross proliferation defects of Cde427~ ES cells upon
culture in complete ES medium for multiple continuous
passages (Figure 3c¢).

Earlier studies in which mutant forms of Cdc42 were over-
expressed in cell lines suggested a specific role for this
protein in selective induction of the mitogen-activated
protein kinase (MAP kinase) cascades [3,7,26,27]. "To test
directly for the requirement for Cdc42, we assayed Caded2-~
ES cells for the ability to phosphorylate specific members
of these cascades, including c-Jun N-terminal/stress-acti-
vated protein kinase (JNK/SAPK) and p38 as well as both
isoforms of extracellular signal-regulated kinase (p44 ERK1
and p42 ERK2). Following treatment with anisomycin, UV

Figure 4

embryos; Outgrowth, blastocyst cultured on gelatin-coated
dishes. Genotypes were assayed by Southern analysis or
by PCR (E3.5).

irradiation or sorbitol, phosphorylation of both JNK and
p38 kinases in Cdr42-- ES cell lines was induced at com-
parable levels to that of wild-type cells (Figure 4a, and
Supplementary material). We also found that JNK, p38
and both isoforms of ERK were similarly rapidly phos-
phorylated upon stimulation of Cde42-- ES cells with
serum (Figure 4b, and Supplementary material). Our
findings therefore clearly establish the existence of
Cdc42-independent mechanisms for activation of these
MAP kinase pathways.

Cdc42 is essential for PIP2-induced actin polymerization

The actin cytoskeleton is a dynamic structure that cells
maintain by tightly regulating temporal and spatial actin
assembly in response to extracellular signals. When grown
on fibronectin-coated coverslips, wild-type ES cells
attached well and showed a rich mixture of actin

Activation of JNK, p38 and ERK in Cdc42-"~

ES cells. ES cells were grown on gelatin- @  ++ - (b) FBS 15%

coated plates without feeder cells for at least ++ =/=

two passages before being used in these £ 5 o O o O min
experiments. All assays were conducted z < z <

within five passages and two independent cell B § T 2 § ‘—-—v -—-—{ — p38-p*

lines of Cdc42++ and Cdc42-'~ were used in S E 3 88 E 38

parallel. Antibodies used in western blotting ‘_ _‘— p38
§pecifically detect dually phosphorylated —emeper esees 3500

isoforms of JNK (Thr183/Tyr185), p38 T —— w | p54 JNK-p*
(Thr180/Tyr182) or p44(p42 ERK ‘ m‘ _ p38 Temew - wmww| 46 JNK-p*
(Thr202/Tyr204). Three independent

experiments were performed and one e Weswww 054 INK
representative experiment is shown. e - wwwwww — p54 JNK-p*

Quantitative analysis of results E:a)n be found __ eeee - "W — p46 INK-p* e — — p44 ERK1-p*
in the Supplementary material. (a) Stress- —— - — *
induced activation ornyNK and p38. ’ Dt it ‘_ p54 JNK P42 ERK2p
Subconfluent Cdc42+/+ and Cdc42-'- ES P—_ -—-....|_ p42 ERK2
cells were used in western blotting analysis Current Biology

after the following treatments: anisomycin at
20 ug/ml for 30 min; UV irradiation for 80 J/m?
and recovery for 30 min in tissue culture
incubator (UV); and sorbitol at 250 mM for

30 min. (b) Serum-induced activation of JNK,
p38 and ERK. Subconfluent ES cells were
starved in ES medium containing LIF and

0.5% FBS for 25-30 h, stimulated with 15%
FBS for the indicated time (0, 10 and 30 min)
and lysed for western blotting.
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cytoskeleton structures that included stress fibers, lamel-
lipodia and microspikes of different sizes (Figure 5a,c). In
contrast, more than 80% of the Cde427- ES cells had a
rounded morphology and were smaller in size. In addition,
the actin structures present in the Cde42-- ES cells were
limited to diffuse and disorganized cytoplasmic actin, con-
centrated actin in cortical areas of the cells, and a few short
microspikes (Figure 5b,d). Given the fact that Cde42-- ES
cells exhibited an abnormal actin cytoskeleton, it seemed
likely that these mutant cells may also have motility
and/or adhesion defects. Assaying for such defects in ES
cells is problematic, however, as ES cells tend to form
colonies and, in general, are not motile. To further address
this issue, we cultured ES cells in differentiating medium
free of lymphocyte inhibitory factor (ILIF) to form embry-
oid bodies [35] and derived ‘fibroblast-like cells’. Prelimi-
nary analyses of these Cdc42-- cells suggested defective
adhesion and migration of cells in the context of various
extracellular matrix proteins including fibronectin, colla-
gen and laminin (F.C. and F.W.A., unpublished data).

Phosphatidylinositol 4,5-bisphosphate (PIP,) is a signal-
ing intermediate that interacts with several actin-binding
proteins [36,37]. Both the G'TP-bound activated form of
Cdc42 and PIP, can stimulate actin polymerization in
Xenopus egg extracts and dominant-negative Cdc42
inhibits  PIP,-induced actin assembly [38-40]. To
examine directly the functional relationship of PIP, and
Cdc42 in actin assembly, we assessed the requirement for
Cdc42 in PIP,-induced actin polymerization. Cell extracts

Cdc42 is essential for PIP,-induced actin polymerization in vitro.

(a) Real-time measurement of pyrene actin polymerization in extracts of
Cdc42+* and Cdc42-"- ES cells stimulated by phosphatidylinositol-
4,5-biphosphate (PIP,). Filled triangles, +/+; filled circles, —/-.

(b) Initial rate of pyrene actin polymerization (filled bars) and maximum
F-actin (open bars) in response to PIP,, phosphatidylcholine (PC) or
phosphatidylinositol (Pl) calculated from the type of data shown in
Figure 4a as described in [25,38]. (c) The initial rate (filled bars) and
maximum F-actin (open bars) for actin polymerization stimulated by
GTPyS-charged wild-type Cdc42. (d) The initial rate (filled bars) and
maximum F-actin (open bars) for actin polymerization stimulated by
N-WASP carboxy-terminal fragment VCA.

were prepared from wild-type and Cde42-- cells and
pyrene actin assays were performed 7z vitro as previously
described [38,41,42]. Whereas PIP, was able to induce
robust actin assembly in extracts from wild-type cells, it
failed to stimulate any actin polymerization in Cdr42--
extracts. Negative controls using only the carrier lipids
phosphatidylcholine (PC) and phosphatidylinositol (PI)
validated the specific activity of PIP, (Figure 6a,b).

To ensure that extracts from Cde42-~ cells had intact
downstream actin assembly components, purified wild-
type Cdc42 was used in reconstitution experiments. We
demonstrated that activated Cdc42 (GTPyS charged) trig-
gered actin polymerization in the Cde42-~ extracts to an
extent indistinguishable from that observed with wild-
type extracts (Figure 6¢). A critical link between Cdc42-
dependent signaling and actin assembly has been
proposed to be a ubiquitously expressed WASP family
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protein, N-WASP [23-25,43]. N-WASP contains a domain
that binds PIP,, a Cdc42-binding (GBD) domain, a
proline-rich region, a G-actin-binding verprolin homology
(V) domain, a cofilin homology (C) domain and a carboxy-
terminal acidic segment (A). A carboxy-terminal fragment
of N-WASP containing the V, C and A domains interacts
with the Arp2/3 complex and dramatically stimulates its
actin nucleation ability [25,44-47]. Correspondingly, the
N-WASP VCA fragment stimulated actin polymerization
in Cde42-/~ extracts, but, unexpectedly, at an even higher
rate than in wild-type extracts (Figure 6d). This
enhanced stimulation of actin polymerization by the VCA
domain in Cde42-~ extracts might reflect the more ready
availability of downstream components, such as the
Arp2/3 complex, in Cde42-- extracts because of the pre-
sumably inactive state of endogenous N-WASP in the
absence of Cdc42. Alternatively, it is conceivable that an
inhibitory regulator of actin nucleation reaction in wild-
type cells is downregulated in the Cde42-- cells to com-
pensate for loss of positive regulation via Cdc42. In any
case, our findings firmly establish that PIP,-induced actin
assembly is mediated by Cdc42.

Conclusions

In yeast, Cdc42 is essential for cell viability, and in mam-
malian cells, studies of dominant-negative mutants in
established cell lines have implicated Cdc42 and Rac as
essential for cell-cycle progression and Ras transformation
[6,7,9,10]. Thus, it is striking that our genetic studies
unequivocally show that Cdc42 is not required for ES cell
viability or proliferation, although we do not exclude pos-
sible roles in other cell types. The differential require-
ments for Cdc42 between yeast cells and mammalian ES
cells might be attributed to differences in cell physiology,
for example with respect to the mechanisms used for cell
division. On the other hand, such differences may also
reflect the presence of redundant factors in mammalian
cells compared to yeast. In this regard, we show that
Cdc42- ES cells exhibit activation of the JNK, p38 and
ERK pathways upon appropriate stimulation, providing
direct evidence for redundant functions of different Rho
G'TPases and/or other factors in these MAP kinase signal-
ing cascades. A related possibility would be the occurrence
of compensatory increases in the expression of another
Rho GTPase in Cdc42-- ES cells, resulting in overlapping
activity with Cdc42. At the expression level, we did not
find such increases in Racl and RhoA in Cde42-- ES cells.
We have not, however, ruled out increased expression of
other Cdc42 homologs such as T'C10 [48-50] or Chp [51],
for which there are no readily available antisera.

Our studies clearly show that Cdc42 is absolutely required
for the early stages of murine development and for normal
actin cytoskeleton organization in ES cells. Moreover,
our assays of extracts made from Cdc42-deficient ES
cells provide direct evidence that PIP,-induced actin

polymerization in mammalian cells is mediated by Cdc42. In
this context, local concentrations of plasma membrane PIP,
have been proposed to regulate the local adhesion between
the actin-based cortical cytoskeleton and plasma membrane
and, therefore, to control cell shape and dynamic membrane
functions [52,53]. Given that Cdc42 is not required for ES
cell proliferation or activation of the MAP kinase cascades,
we speculate that a major factor contributing to defective
post-implantation development of Cdc42-7~ embryos could
be an inability to properly form and reorganize actin-based
cellular structures crucial for further gastrulation.

Materials and methods

Generation and genotype analysis of Cdc42 knock-out mice
and embryos

The Cdc42 knock-out mice were generated by standard methods. To
PCR genotype single blastocysts, timed breeding of Cdc42+/~ mice
was set up, E3.5 embryos were harvested individually into 20 ul lysis
buffer (50 mM Tris pH 8.0, 0.5% Triton X-100, proteinase K to
1 mg/ml) and incubated at 50°C, overnight. The lysate was heat inacti-
vated at 95°C for 5 min before PCR reaction with following primers:
common forward primer: 5'-ATATCGGTCACTGTTCTACTTTG-3';
knock-out reverse primer: 5'-CCTTCTTGACGAGTTCTTCTGAGG-3';
wild-type reverse primer: 5-AGTTGGTACATATTCCGATG-3'.

ES cell culture

ES cells were derived following protocols described in [28]. The early-
passage Cdc42++ and Cdc427- ES cell lines were cultured on
gelatin-coated plates in DMEM (Gibco-BRL) containing 15% fetal
bovine serum (FBS, Sigma), 2 mM L-glutamine (Gibco-BRL), 0.1 mM
nonessential amino acids (Gibco-BRL), 0.1 mM B-mercaptoethanol
(Sigma), 100 units/ml  penicillin—streptomycin  (Gibco-BRL), and
1000 units/ml lymphocyte inhibitory factor (LIF, Gibco-BRL) at 37°C
and 5% CO.,.

MAP kinase analysis

Following the indicated treatment, ES cells were lysed in KLB buffer
(25 mM Tris-HCI pH 7.4, 160 mM NaCl, 56 mM EDTA, 1% Triton
X-100, 10 mM sodium pyrophosphate, 10 mM f-glycerophosphate,
1 mM sodium orthovanadate, 10% glycerol) supplemented with 1 mM
PMSF, 1% aprotinin, 1 mM DTT and 0.1 mM H,O,-activated sodium
pervanadate. Rabbit polyclonal antibodies against phospho-JNK,
phospho-p38 and phospho-ERK (New England Biolabs) were used for
western blotting. Protein normalization was done using antibodies
against p54 JNK, p38 (New England Biolabs) and ERK2 (Santa Cruz
Biotechnology). Horseradish peroxidase-conjugated secondary anti-
bodies (Pierce) were used in an enhanced chemiluminescence detec-
tion method (Amersham).

Actin cytoskeleton staining

Coverglasses were coated with human plasma fibronectin (Gibco-
BRL) at 37°C for 2 h and washed with PBS before use. 5 x 104 ES
cells are seeded on fibronectin-coated coverglasses in a 24-well plate
for 20 h and fixed in 4% paraformaldehyde. Cells were then permeabi-
lized and stained with rhodamine-conjugated phalloidin.

In vitro actin polymerization assay

For the preparation of cell extracts, ES cell pellets were thawed and
resuspended in an equal volume of lysis buffer (10 mM HEPES
pH7.6, 100mM KCI, 1 mM MgCl,, 0.1 mM EDTA, 1 mM DTT,
10 ug/ml chymostatin, pepstatin and leupeptin, and 0.5 mM PMSF).
Cells were then broken using a probe sonicator and the lysate was
centrifuged at 3000g for 30 min. The supernatant (low-speed ES cell
extract) was carefully removed from the nuclear pellet, diluted seven-
fold in lysis buffer, and centrifuged at 400,000g for 1 h. The clear
supernatant was collected and concentrated to 0.5—1 volume of the
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original low-speed extract using a Centriprep-10 spin column
(Amicon Corp). The high-speed ES cell extract was then supple-
mented with an energy-regenerating mix (1 mM ATP, 1.25 mM MgCl,,
7.5 mM creatine phosphate) and stored at —80°C. Actin polymeriza-
tion was assayed in the ES cell extracts following a previously pub-
lished protocol [38]. Briefly, cell extracts were diluted in the lysis
buffer to the same final concentration (~10 mg/ml) and then supple-
mented with 1 uM pyrene-labeled rabbit skeletal muscle actin. Fluo-
rescence was monitored in 80 ul samples of reaction mixture using a
fluorospectrometer. After the basal fluorescence was stabilized within
5 min, 2-5 ul of phospholipids, Cdc42 or NWASP-VCA were added
to stimulate actin polymerization. The initial rate was measured from
the initial slope of fluorescence increase, and the maximum F-actin
was calculated from the fluorescence difference between the peak
and the baseline.

Supplementary material

Supplementary material including a table showing the activation of
MAP kinases in wild-type and Cdc42-deficient ES cells is available at
http://current-biology.com/supmat/supmatin.htm.
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