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Polypharmacology (action of drugs against multiple targets) rep-
resents a tempting avenue for new drug development; unfortu-
nately, methods capable of exploiting the known polypharmacology
of drugs for target deconvolution are lacking. Here, we present an
ensemble approach using elastic net regularization combined with
mRNA expression profiling and previously characterized data on
a large set of kinase inhibitors to identify kinases that are important
for epithelial and mesenchymal cell migration. By profiling a selected
optimal set of 32 kinase inhibitors in a panel against six cell lines, we
identified cell type-specific kinases that regulate cell migration. Our
discovery of several informative kinases with a previously unchar-
acterized role in cell migration (such as Mst and Taok family of
MAPK kinases in mesenchymal cells) may represent novel targets
that warrant further investigation. Target deconvolution using our
ensemble approach has the potential to aid in the rational design of
more potent but less toxic drug combinations.

systems pharmacology | regularized regression | perturbation biology |
predictive modeling | cancer cell migration

For most diseases, the development of specific “one target, one
drug” or euphemistically, “magic bullet” therapy, has been

difficult to achieve (1). It is even rather difficult to chemically
achieve single target specificity. Furthermore, it is now evident
that many of the most effective drugs in therapeutic areas as
diverse as oncology (such as Gleevec), psychiatry (such as sero-
tonin reuptake inhibitors), and inflammation (such as aspirin) act
on multiple rather than single targets—a phenomenon known as
polypharmacology (2, 3). Although the pharmaceutical industry
and the US Food and Drug Administration (FDA) has for years
focused on single targets, it may turn out to be true that hitting
multiple targets is preferable, an emerging idea referred to as
network pharmacology.
Designing drugs with a specific multitarget profile or designing

a rational combination of such drugs is both complex and diffi-
cult, but could serve to improve the balance between efficacy and
safety compared with single targets agents. Therefore, despite
the complexity of designing such drugs, there is an incentive to
develop new systems-based methods capable of exploiting the
known polypharmacology of drugs to identify the molecular
targets of active hits, also called “target deconvolution.” Such
methods are not only important for elucidating mechanisms of
action but also for identifying effective pathways involved in
disease as a preliminary step in rational design of drugs for new
targets. Furthermore, if target-specific toxicity and off-target
effects could be addressed early in the drug discovery pipeline,
the high attrition rate in drug development might be reduced (4).
Recent advances in high-throughput “omics” technologies have

led to the development of methods to efficiently and reliably profile
drug target selectivities both in vitro and in the cellular environ-
ment. One such well-characterized set of drugs is the class of small
molecule kinase inhibitors that are widely used to identify cellular
signaling pathways and are promising therapeutic agents. To date,
several groups have profiled hundreds of known kinase inhibitors
against sizable fractions of the 518 human protein kinases (5, 6).
The resulting kinase-inhibitor interaction maps have revealed an
unexpected number of interactions with off-target kinases, even for
well-characterized kinase inhibitors that were thought to be specific

(5). This complexity has made it difficult to be certain whether a
given pathway is in fact involved in a specific process based on the
assumption that an inhibitor is specific for a target kinase. Although
this presents a serious obstacle, it still may be possible to use that
information in conjunction with advanced computational methods
to identify the relevant kinase target or targets. Furthermore, such
an approach might also be reversed to achieve improved specificity
by designing mixtures of kinase inhibitors.
Our initial goal was to identify the important kinases involved

in a specific cellular phenotype from the spectrum of action of
unspecific inhibitors on that phenotype. As a first step toward
that goal, we demonstrate that, for some classes of drugs and
target molecules, analysis of unspecific drug action can be bro-
ken down into three steps: first, an in vitro characterization of
a complete “drug to target” specificity map for a set of unspecific
inhibitors; second, an in vivo phenotypic assay of a subset of
these drugs; and third, construction of an optimized model that
will identify the primary kinase targets and should also have the
bonus of predicting the effects of untested drugs on that phe-
notype (Figs. 1 and 2A). To exemplify our approach, we exam-
ined the effect of known kinase inhibitors on cell migration in
several cancer cell lines. We apply a well-established variable
selection method, called “elastic net regularization” combined
with mRNA expression-based profiling of kinases previously exe-
cuted on a large set of kinase inhibitors to identify kinases
(deconvolve) that are important for epithelial and mesenchymal
cell migration. Our approach is based on the property that kinase
inhibitors have broad specificity, but the spectrum of targets is
different for each one. Profiling a set of 32 optimally designed ki-
nase inhibitors against six cell lines, we identified cell type-specific
kinases that regulate cell migration. Using gene depletion, we val-
idated a role for a subset of cell type-specific kinases in mesen-
chymal cancer cell migration. Further, using the same regularized
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regression model (dubbed “kinome regularization”), we showed
that we can also accurately predict a cell type-specific response to
previously untested kinase inhibitors. Factoring the analysis this
way enables the tradeoff between resources put toward the core
drug characterization vs. resources that could be expanded to
additional assaying cell lines with new phenotypes.

Results
Real-Time Quantitative Measurement of Cell Migration for Phenotypic
Screening. An example of a complex phenotype, for which we
might want to identify the underlying molecular pathways, is cell
migration. Cell migration is a complicated process involving sig-
naling molecules both in the membrane and in the cytosol and
cytoskeletal filaments regulated directly and indirectly by these
signaling molecules. It is a hallmark of embryonic development,
wound repair, and pathological conditions such as cancer invasion
and metastasis (7). Several kinase-driven signaling pathways are
known to affect cell migration in a cell type-specific manner, in-
cluding PI3K, MAPK, focal adhesion kinase, and mammalian
target of rapamycin pathways (7). Methods such as Boyden cham-
ber and wound healing assays are well recognized to assess mi-
gration of cells in a tissue culture system (8, 9). We optimized
a label-free, real-time, high-throughput method of monitoring
wound closure using a time lapse imaging system. In this assay,
wound closure was monitored in cells plated on 96-well plates
treated with varying doses of kinase inhibitors (Fig. 2B). An ad-
vantage of this approach is that the real-time monitoring allows
identification of an optimal time point for dose–response curves
and accurate determination of drug-specific EC50 (50% reduction
in cell migration compared with DMSO control). For instance, a
linear range of wound closure of untreated nontransformed
mammary epithelial cells, Mcf10a, had to be measured at a point
less than 20 h after wounding the monolayer (Fig. 2B). Thus, a
12-h time point (which showed 70% of maximum wound closure)
was chosen for dose–response curves to accurately determine the
EC50 for various kinase inhibitors. Using this criterion, the EC50 of
an epidermal growth factor receptor (EGFR) inhibitor (erlotinib)
on migration of Mcf10a cells at 12 h was determined to be 250 nM
(a sixfold difference compared with the EC50 measured at the
traditional 72-h end point, 1.6 μM, which is distorted by the
compression of data at a low dose).

Selection of an Optimal Kinase Inhibitor Set. The problem of identi-
fying the optimal set of kinase inhibitors can be viewed as a
dimensionality reduction problem. We would like to identify a
smaller optimal subset of inhibitors that will be almost as in-
formative about the kinases as the complete set. The intrinsic
dimensionality of the kinase-to-inhibitor map can be measured by
the number of principal components in the principal component
analysis (PCA). For the interaction map, the cumulative percent
of variance explained by the first few principal components turns
out to be relatively low, which suggests that kinase data are rich
and cannot be explained by any set of a small number of di-
mensions (drugs). In particular, we observed that 26 principal
components capture 80% of the variance in the data (Fig. S1 and

Table S1). I.e., we can replace 178 dimensions (drugs) with 26 at
a relatively small (20%) loss of information about the kinase
targets. Once the number of informative variablesm is decided on,
we selected them principal variables, chosen so that they preserve
most of the variation in the complete dataset. To do this, we used
the well-established forward selection procedure termed B4 (10),
which associates and retains variables with the highest absolute
value in the top m principal components. Table S1 shows the list
of top 26 inhibitors selected by the B4 principle variable pro-
cedure; 16 of these inhibitors (labeled in bold font) were used in
our experiments. An additional 16 reasonably selective inhibitors
[Gini coefficient (11) > 0.5 that scores relative selectivity from
0 (nonselective) to 1 (highly selective)] were also chosen, repre-
senting what we consider to be a sound set of 32 kinase inhibitors
for phenotypic profiling.

1. Select a broad set of drugs D and drug targets T and obtain an interaction map M: D x T (e. g. kinase inhibitors specificity is characterized in vitro). This is done once to 
provide M for multiple phenotypic studies as long as it includes all drugs and targets potentially related to the phenotypes of interest.   

2. Set up a continuous phenotypic assay to characterize the drug effect (e.g. a wound healing, cell growth, or cell morphology assay. Incorporate positive and negative controls).

3. Select a small representative subset D’ of drugs D ( e.g. spanning the space of kinase inhibition) not too selective and not to promiscuous; execute phenotype assay with D’
 drugs.  

4. Perform data analysis by regularized regression to create a model based on a minimal set of predictors (i.e.targets such as kinases).  

5. Apply the model to untested drugs, selecting a drug (or combination) with the highest efficacy. 

6. If multiple phenotype assays and multiple cell lines are used concurrently, identify combinatorially optimal drug treatment (e.g. minimizing both proliferation of cancer cells and 
apoptosis in normal tissue cells).  

Fig. 1. Step by step method: exploiting polypharmacology for drug target deconvolution.
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Fig. 2. An ensemble approach of exploiting polypharmacology for kinase
drug target deconvolution. (A) A schematic showing our approach of using
a combination of drug-target interaction map, drug phenotypic screen, and
regularized regression to exploit the polypharmacology of drugs to identify
drug targets, predict efficacy, and rationally design combination therapy. (B)
A real-time quantitative phenotypic method to measure cell migration using
the scratch wound assay. A plot of relative wound density of Mcf10a cells
treated with varying doses of Erlotinib. (Right) Representative images of
cells with wound area are also shown. (C) A plot of Gini score of all 32 kinase
inhibitors and their effect on relative migration in FOCUS cells. (D) Plots
showing the effect of 32 kinase inhibitors on cell migration in Hs578t
(mesenchymal) and Mcf10a (epithelial) breast cell lines.
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Optimally Designed Kinase Inhibitor Screen That Measures Cell Migration
as an Aggregate Phenotype. We treated a panel of six cell lines
spanning three different cancer types with a set of 32 optimally
designed small molecule kinase inhibitors that collectively target
a wide variety of protein kinases (Table S2). Each drug was ex-
amined at several different concentrations, and its effect on cell
migration was then scored using a quantitative real-time wound
closure assay. We used a previously characterized kinase inhibitor-
activity interaction matrix to assess the in vitro activity of kinase
inhibitors that profiled 300 kinases, including those targeting serine,
threonine, and tyrosine (5). This collection of kinase inhibitors
spanned kinases with profiles exhibiting very broad selectivity (e.g.,
staurosporine, which inhibited 82% of all kinases tested at 500 nM)
to profiles indicating high selectivity (e.g., lapatinib, which showed
measurable inhibition of only 1% of all kinases tested; Fig. S1).
In an ideal world of pharmacology, there would be one com-

pletely specific inhibitor for each kinase, and in addition, there
might be broader-based inhibitors whose targets represented
proper subsets of proteins related by sequence or some other
property. The real world is far from that. Most kinase inhibitors
affect multiple targets often from diverse subfamilies; often
a single drug will hit kinases in very different structural sub-
classes, making it necessary to deconvolve inhibition data em-
pirically by the polypharmacology of the compounds. However,
polypharmacology can be measured directly in vitro by probing
recombinant kinases with a drug at a range of concentrations to
generate a kinome profile (5) and a Gini coefficient. The Gini co-
efficient of inhibitors in our screen varied from 0.2 (staurosporine)
to 0.81 (masitinib) (Fig. 2C). The correlation between the
Gini score and inhibition of cell migration in cell lines was low
[R2 ∼ 0.20 in Friendship of China and US (FOCUS) cells derived
from a patient with primary hepatocellular carcinoma], suggest-
ing that only one or a small number of kinases was involved (Fig.
2C). Overall, our set of 32 kinase inhibitors, when assayed at
a concentration range of 1 nM to 10 μM, which was at least 20
times above the IC50 in vitro, was spread across a wide range of
effectiveness in cell migration in all epithelial or mesenchymal cell
lines tested (Fig. 2D). Several inhibitors had either low or no effect
on cell migration (migration efficiencies of >90% of control),
whereas some inhibited cell migration very potently (<20% of
control) (Fig. 2D). Several inhibitors had a moderate to weak
effect on cell migration (30–70% of control) (Fig. 2D). It was
certainly not the case that the most potent inhibitors were most
specific, as was clear from Fig. 2C, and this therefore made it more
difficult to infer which kinases were the most responsible for
inhibiting cell migration.

Deconvolution of the Polypharmacology. To identify a set of kinases
that affect cell migration, we used elastic net regularization, which
is a technique that regresses a single target variable (quantified
cell migration) against a set of predictor variables (the activities of
individual kinases) while imposing a penalty on the number of
variables that effectively eliminates variables with insignificant
contributions. Formally, we modeled the phenotype y as a linear
function of kinase activity X, y = β0 + Xβ, which is in turn defined
by the interaction mapM between drugs and kinases. The variable
selection step determines which kinases (not which kinase inhib-
itors) have the greatest explanatory power for the phenotype. We
used a standard “leave-one-out cross validation” (LOOCV) to
identify a set of informative kinases at the absolute minimum of
the least-mean-square error (Fig. 3A). The profiles shown in Fig.
3A present two typical optimization scenarios. Degrees of freedom
correspond to the number of informative kinases used in re-
gression. As kinases are removed on the left (Hs578t, breast ductal
carcinoma), the fitness is roughly flat, which means that extra
variables neither helped nor hindered the accuracy of the model,
as one would expect from a random variable being factored into
a model. Once removing more variables hurts the accuracy, a good
list of 16 predictors is found. On the right (Mcf10a), removing
variables significantly improves the accuracy at first, indicating

that for some kinases the inhibition level works as a proxy iden-
tifier for a drug (a variable that leads to overfitting). There is a
clearly defined optimal point that gives a set of seven informative
kinases. Interestingly, every informative kinase in this set of 16
kinases (in Hs578t) was broadly affected by all 32 inhibitors tested
(Fig. 3B). Note that our selection procedure eliminates those
inhibitors that are collinear in the space of targets. If there were
two inhibitors that affected all targets similarly (up to a constant
factor), it would be impossible to distinguish which of the affected
targets is actually responsible for the phenotype. As illustrated by
Fig. 3C where two inhibitors d1 and d2 affect four targets K1–K4
proportionally, if K1 was causally related to the phenotype, it
could still appear that the other three kinases would affect the
phenotype, because every time K1 is affected, K2–K4 would be
affected proportionally. Such false positives would be eliminated
by experimental validation. Although our method drastically
narrows down the list of candidate kinases from 300 to <30 for
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Fig. 3. Identification of informative kinases in cell migration using elastic
net regularization. (A) Plots show LOOCV error using elastic net regulari-
zation fit in HS578t and Mcf10a cell lines. The error bars represent cross-
validation error plus 1 SD. The kinases identified at absolute minima (blue
dashed line) were termed the most informative kinases. (B) The observed
kinase activities of all informative kinases identified using elastic net regu-
larization were affected by the panel of 32 kinase inhibitors used in our
screen. A heatmap showing in vitro residual kinase activities of the 16 most
informative kinases identified in Hs578t cells against 32 kinase inhibitors
tested. (C) An illustration showing if two inhibitors d1 and d2 are affecting
four targets K1–K4 proportionally, it would be impossible to distinguish
which of the affected targets is actually responsible for the phenotype. (D)
Bar graphs showing the nonzero elastic net coefficients associated with the
most informative kinases (determined at α = 1) identified in Hs578t and
Mcf10a cells are shown. (E) Subcellular and functional annotation of in-
formative kinases identified in all three mesenchymal cancer cells (union of
0.7 ≤ α ≤ 1.0). Kinases with known role in cell migration are listed in bold font.
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each of the six cell lines tested (two are shown in Fig. 3D), the
reduced set could still contain kinases that are not even
expressed in a given cell line, including kinases that are in a
collinear group of kinases (Fig. 3C). Using mRNA expression
profiling of the informative kinase set, we could purge un-
expressed kinases and rerun the regression on a pruned set. In this
way, we were able to eliminate 12 kinases from consideration in the
mesenchymal cell lines (Tables S3 and S4). Overall, we identified
a minimal informative set (<10% of all kinases) in each of the
epithelial and mesenchymal cell lines and rank ordered these by
importance in the cell migration phenotype (Fig. 3D and Table S3).

Kinases Specific to Cell Type. Having identified a set of specific
informative kinases that best predict the phenotype of cell mi-
gration, we next asked if these kinases could provide new insight
into the functional subclasses or signaling pathways that may play
role in cell motility. When we compared the reduced set of in-
formative kinases across the three mesenchymal cell lines, there
was appreciable overlap (42%, 21/50) in at least two of the cell
lines (Table S3 and Fig. 3E). Seven kinases were found in all
three mesenchymal cell lines (Camk2g, Ddr2, Mst2, Mst4,
Nek11, PDGFRb, and Sik2), and five kinases were found in two
epithelial cancer cell lines (Cdk2, Pak1, Mst2, Tbk1, and Sik2).
Among the cancer cells lines, three kinases (Ack1, Mst2, and
Sik2) were common to both liver cell lines: FOCUS (mesen-
chymal) and Huh7 (well differentiated hepatocyte derived epi-
thelial cell line), whereas six kinases (Erbb2, Cdk2, Sik2, Jak3,
Pak1, and Mst2) were common to both breast cell lines Hs578t
(mesenchymal) and Mcf10a (epithelial) (Table S3). Interestingly,
five kinases (Camk2g, Ddr2, Pdgfrb, Mst4, and Nek11) were
found to be informative in all mesenchymal cell lines and not in
any of the two epithelial cell lines. Further, Tbk1 was found to be
informative in both epithelial cell lines and not in any of the three
mesenchymal cell lines (Table S3 and Fig. 3E). Together, these
data highlight roles of cell type- specific kinases in cell migration.
Subcellular and functional annotations of these informative

kinases revealed cell type-specific and functionally distinct clas-
ses of kinases that are important for mesenchymal cell migration
(Fig. 3E). Among transmembrane kinases, receptor tyrosine kinases
(RTKs) such as PDGFRb, c-Met, Erbb2/4, ephrin, and insulin
receptors (IRs) were identified as the most informative. Alk1
was identified only in Calu-1 (non–small-cell lung cancer cell
line). Among cytosolic kinases, three major subfamilies of ki-
nases [CAMK, Src family kinases (SFK), and MAPK family)
emerged. Finally, two cytoskeletal kinases were also identified
(Ack1 and Pak1), along with DDR2, which was previously shown
to localize in focal adhesions (12). A set of kinases previously known
for important roles in cell growth or cell cycle was also identified
to affect cell migration (Cdk2, Nek1, and Nek11) (13–15).
The list of predictors (kinases) identified by the regularized

regression is very robust to the parameters of optimization (Fig.
4A). In particular, although the elastic net penalty parameter
α controls how many predictors get chosen, we observe that the
same predictor variables emerge as significant for a wide range
of parameter values. We should pay particular attention to the
kinases selected at the top of the list (with the highest coef-
ficients). It is well known (16) that the ridge penalty setting (α =
0) shrinks the coefficients of correlated predictors toward each
other, whereas the lasso setting (α = 1) tends to pick one of them
and discard the others. The elastic net penalty mixes these two; if
predictors are correlated in groups, an α ∼ 0.5 tends to select the
groups in or out together. Taking this into consideration, we
explored all values of α between 0 and 1, focusing on α > 0.5
(Fig. 4A). PDGFRb is a great example of a predictor that is
selected as an important predictor in all mesenchymal cell lines
independently of α, whereas IR is not.
To validate the role of the cell type-specific kinases that we

predicted to be important in mesenchymal cell migration, we
looked at the effects of depleting of these kinases in gene
knockdown experiments. Using a pooled set of four siRNA, we

knocked down the expression of five kinases in all three mesen-
chymal cell lines tested and measured their effect on cell migration.
As predicted, knocking down the expression of PDGFRb, Met,
Mink1, and Camk1d significantly decreased migration, whereas, as
a control, knocking down the expression of IR had no effect on
cell migration in Calu-1 lung cancer cells (Fig. 3B and Fig. S2).
In Hs578t breast cancer cells, PDGFRb, Mink1, and IR were
validated to be important for cell migration, whereas knockdown
of Met and Camk1d had no observable effect on cell migration
(Fig. 3B and Fig. S2), consistent with the elastic net regression
predictions. Also, knockdown of only Camk1d in FOCUS cells
significantly decreased cell migration, whereas knockdown of
PDGFRb, Met, Mink1, and IR had no affect (Fig. 4B).

Evaluating the Predictive Capacity of the Elastic Net Method for New
Drugs.A strong test of any method would be to be able to predict
the response of a previously untested perturbation. Therefore,
we asked if we can predict a cell type-specific response to an
unseen kinase inhibitor using regularized regression. From in
vitro target kinase profiling measurements of a test molecule, we
should be able to translate this inhibition profile into a pre-
diction of efficacy toward the specific phenotypic marker, in this
case cell migration. Because drug action is equated in our ap-
proach to a tuple of kinase inhibitions <X>, we can extrapolate
the phenotype to drugs that were previously characterized in the
interaction map M but not measured in the phenotypic assay.
We evaluated the prediction power by a LOOCV procedure. A
model to predict what phenotype a given drug will induce is
constructed using a training set of drugs. LOOCV on a set of
k drugs corresponds to k independent experiments, where each
time k − 1 drugs are used to build the model and make a pre-
diction for a single held-out drug; then prediction is validated
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empirically. There is no clear way to define the desired predictive
power, because it is unclear how to trade off between precision
and recall in different parts of phenotypic value range. Identifying
a drug as ineffective is equally important to correctly ordering the
efficacy of effective drugs. We present a scatter plot of measured
(abscissa) against predicted (ordinate) values (Fig. 5A). A strong
correlation (Pearson correlation of 0.86 and 0.74, respectively)
between observed and predicted migration of both Hs578t (mes-
enchymal) and Mcf10a (epithelial) cells provides strong evidence
for the predictive capacity of our model. A detail discussion on
why some drugs are poorly predicted (e.g., rapamycin in Hs578t
and K-252 in Mcf10a) is provided in SI Materials and Methods.
Informative nonzero variables determined by elastic net reg-

ularization were next used to predict the efficacy of 178 small
molecule kinase inhibitors (146 previously untested; Fig. 5B and
Fig. S3). The top 20 kinase inhibitors (hits) predicted to affect
cell migration in the FOCUS cell line is highlighted in Fig. 5B.
Most of the kinase inhibitors had a negligible effect on the
phenotype. The analysis predicts that only 20 of 178 drugs would
cause as much as a 20% reduction in migration. Of these, the
effect of seven previously untested inhibitors was validated ex-
perimentally, shown as blue circles in Fig. 5B (Table S5).

Discussion
Polypharmacology is simply the action of drugs against multiple
targets. It is both a conundrum for the pharmaceutical industry
and a tempting avenue for new approaches to drug development
(17). Although industry has usually sought to develop drugs with
high affinity and high specificity, there is acknowledgment that
these two properties are not a prerequisite for either efficacy or
safety. One problem in studying polypharmacology is the need
for theoretical ways of using it and predicting it. Large scale
unbiased screening of drug combinations is difficult and expen-
sive and therefore must be limited to simple screens. High content
screens, such as cell behavior or, worse yet, whole animals, are
completely prohibitive. Until these problems can be solved, the
challenges are daunting to bring large-scale screening to the stage
where proper clinical trials can be designed. An important con-
tribution of this study is first to acknowledge and then to exploit
the idea of polypharmacology of drug target deconvolution and to
open up some combined experimental and statistical approaches
to this area.
We used the elastic net regularization combined with expres-

sion profiling and previously characterized data on a large set
of kinase inhibitors to identify kinases that are important for
epithelial and mesenchymal cell migration. Profiling a sound set
of 32 kinase inhibitors in a panel against six cell lines, we iden-
tified cell type-specific kinases that affect cell migration. Many of

the informative kinases identified had previously well-established
roles in cell migration (e.g., all RTKs and cytoskeletal kinases
identified in mesenchymal cells; Fig. 3E), validating our approach.
Interestingly, our approach uncovered informative kinases that
were selective for specific cell types. For example, IR was infor-
mative of cell migration in breast cancer cell line, Hs578t, consistent
with its established role in breast cancer progression (18). Similarly,
Met and Erbb4 were identified as informative in the lung cancer
cell line, Calu-1, consistent with previous studies (19, 20). PDGFRb
and Epha3 were identified as informative kinases in all mesen-
chymal cell lines in agreement with their previously known role in
mesenchymal cell migration and their contribution to tumor pro-
gression and metastasis (21, 22). More importantly, our discovery of
cell type-specific multiple informative RTKs may support the idea
of extensive redundancy of RTK-transduced signaling in cancer
cells (23). RTK-mediated signaling pathways share multiple
downstream signaling elements, and inhibiting the dominant
RTK often results in the compensatory recruitment of down-
stream components by secondary RTKs. An example of a domi-
nant RTK includes ErbB2, whereas secondary RTKs such as
c-Met, PDGFR, and IGF-1R have been reported (24, 25). These
RTK coactivation events converge at a number of downstream
signaling pathways such as PI3K/Akt and MAPK/ERK (26).
Systems-wide analyses of tumors have also identified RTK
coactivation as an important mechanism through which cancer
cells attain chemo-resistance (23). Thus, our data showing
prevalence of multiple cell type-specific informative RTKs reg-
ulating cell migration may in part explain acquired resistance to
drugs targeting oncogenic kinases. Targeting multiple redundant
informative kinases (such as Erbb2, Pdgfrb, and insulin signaling
in Hs578t cells) could offer support for rational and effective
strategies to combat drug resistance.
Camk2g, Ddr2, Mst4, and Nek11 were found to be informative

in all mesenchymal cell lines but not in any of the two epithelial
cell lines, suggesting a preferential role for these kinases in
mesenchymal cell migration. Of these, Ddr2 is a critical regulator
and marker for epithelial-to-mesenchymal transition (27). Fur-
ther, Tbk1 was found to be informative in both epithelial cell
lines but not in any of the three mesenchymal cell lines. Previous
studies have shown Tbk1 is an essential element of innate im-
munity signaling in most epithelial and stromal cell types (28).
Together, these data may support the idea of distinct kinases or
pathways that regulate epithelial and mesenchymal cell migration
(29). Further, using gene depletion experiments, we validated
roles of cell type-specific kinases in regulating mesenchymal can-
cer cell migration (Fig. 4B). Thus, using information gained from
the ensemble approach, we cannot only identify cell type-specific
targets but can also begin to consider drugs that will only selec-
tively affect one cell type (e.g., tumor cells) while leaving other cell
types (e.g., normal cells) alone, thereby minimizing possible ad-
verse effects. Such approaches can be used to distinguish cell types
that differ in different tissues, different cell states (analogous to
the epithelial and mesenchymal tumors from the same tissue of
origin), and cells from different genetic backgrounds. Profiling an
informative set of inhibitors against tumor cells from individual
tumors could become relatively inexpensive and might in the fu-
ture even be used to identify appropriate individual therapies.
Finally, our discovery of several informative kinases with no pre-
viously characterized role in cell migration (such as the Mst and
Taok families of MAPK kinases in mesenchymal cells) may cor-
respond to novel targets that could warrant further investigation.
We were frankly surprised by how well this approach worked,

as judged by extensive cross-validation and validation of pre-
viously untested inhibitors, which begs the question of the intrinsic
value of this approach compared with genetic and pseudogenetic
approaches like RNAi. In genetics, the gold standard is the null
mutation. Whereas there is no question that analysis of such
mutations has yielded invaluable data, it is worth pointing out
that in physical chemistry, the gold standard is quite different: an
infinitesimal perturbation of a system at equilibrium or steady
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state. Although drug effects have the serious problem of acting
on multiple and usually unknown targets, they have the advan-
tage of generating dose–responses, producing small perturba-
tions, which can be closer to the initial state than to the null state
and may be closer to the physiological state of a whole organism
exposed to a drug. If there were a way to deconvolute the
meaningful targets of these generally unspecific drugs, some of
the mechanistic value of this quantitative and limited pertur-
bation could be captured. Furthermore, drugs can be added
acutely, whereas genetic manipulations and even RNAi usually
require days, during which time, adaptations have time to occur.
In addition, unlike genetic or RNAi approaches, small molecule
inhibitors can easily be adapted for both primary and difficult-to-
transfect cell lines, as well as for in vivo models. Finally, using
a regularized regression model, cell type-specific response to
unseen kinase inhibitors can be predicted (Fig. 5B, Fig. S4, and
Table S5), a clear advantage over other approaches. The effect
of combination of kinase inhibitors may also be predicted with
some success (Figs. S4 and S5). Future investigations involving in
vitro probing of more kinases at multiple doses and more so-
phisticated modeling should improve the predictive power of
combination treatments. The use of these inexpensive and simple
procedures could tip the balance toward the use of more cell
lines and new phenotypes over highly expensive and complex
assays in only a few cell lines.
Several assumptions underlie the regularized regression ap-

proach. We limited our analysis only to those kinases that have
been currently profiled. We assumed that different inhibitors
accumulate similarly inside the cell. We also assumed that the
kinase in vitro behaves similarly to the kinase within the cell,
ignoring various types of regulation that may affect total activity
and potentially even specificity. No assumptions were made re-
garding relative abundance, subcellular localization of kinases or
the timing of drug-target interactions. Some of these assump-
tions could be optimized by future studies of both mRNA and
protein concentration and the activity of kinases in concentrated
extracts from cell lines using advanced sequencing and mass
spectrometry-based methods. We were hampered by the fact that
the published in vitro kinase measurements were at a single dose
(500 nM). With little effort, multiple doses could easily be

examined, and this should greatly increase the power of our
analysis to capture the polypharmacology of drugs. Nevertheless,
our analytical methods are well positioned to take advantage of
these improvements and in particular the increase in the number
of kinases available for screening (currently ∼400/518 kinases).
Finally, future studies could also benefit from more advanced
methods of machine learning, including, e.g., adaptive Bayesian
lasso regression (30). Broadly, this approach is also generally ap-
plicable to other classes of enzyme inhibitors such as deacetylases
and methyltransferases, for which informative target profiles can be
obtained. The combination rule from the FDA requires a mecha-
nistic rationale to justify use of the investigational drugs in combi-
nation at various stages of development. Target deconvolution using
our ensemble approach has the potential to aid in the rational
design of more potent but less toxic drug combinations, thereby
bringing rational polypharmacology to bear on some of the most
recalcitrant medical problems.

Materials and Methods
Kinetic Wound Healing Assay for Cell Migration. The effect of kinase inhibitors
on cell migration was studied using a wound healing assay. Briefly, cells were
plated on 96-well plates, and a wound was scratched with a wound scratcher.
Inhibitors at different doses were added immediately after wound scratching,
and wound confluence was monitored with an Incucyte Live-Cell Imaging
System (Essen Instruments). All of themolecules used in this study are known to
be bioactive and therefore must penetrate the cells, but comparative phar-
macokinetics/bioactivity of this large collection of inhibitors is not known.
Inhibitors were dissolved in DMSO and diluted, and then a constant volume of
DMSO was added to each well, with a no drug DMSO control. The percentage
migration at 500 nM calculated using the full dose–response curves for each of
the inhibitors was used as a response variable for regression.

Implementation of Elastic Net. Regularized regression in this project was done
using the “Glmnet” package for MATLAB (www.stanford.edu/∼hastie/glmnet_
matlab). Further details can be found in SI Materials and Methods.
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