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Cell mass and chemical composition are important aggregate cellular properties that are
especially relevant to physiological processes, such as growth control and tissue homeo-
stasis. Despite their importance, it has been difficult to measure these features quantita-
tively at the individual cell level in intact tissue. Here, we introduce normalized Raman
imaging (NoRI), a stimulated Raman scattering (SRS) microscopy method that pro-
vides the local concentrations of protein, lipid, and water from live or fixed tissue sam-
ples with high spatial resolution. Using NoRI, we demonstrate that protein, lipid, and
water concentrations at the single cell are maintained in a tight range in cells under the
same physiological conditions and are altered in different physiological states, such as
cell cycle stages, attachment to substrates of different stiffness, or by entering senes-
cence. In animal tissues, protein and lipid concentration varies with cell types, yet an
unexpected cell-to-cell heterogeneity was found in cerebellar Purkinje cells. The protein
and lipid concentration profile provides means to quantitatively compare disease-related
pathology, as demonstrated using models of Alzheimer’s disease. This demonstration
shows that NoRI is a broadly applicable technique for probing the biological regulation
of protein mass, lipid mass, and water mass for studies of cellular and tissue growth,
homeostasis, and disease.

cell size j quantitative microscopy j single cell mass quantification j lipid imaging j stimulated Raman
scattering

Cells must tightly control their volume, mass, and molecular composition to ensure fit-
ness (1) or functionality in a tissue context (2). Cell mass and volume growth are
closely coordinated with proliferation (3, 4) and tissue growth (5), and the ratio of
mass to volume, that is mass concentration, reflects macromolecular crowding of the
intracellular milieu (6) and influences cellular fitness (1). Despite the conceptual sim-
plicity and importance of these physiological features, our understanding how cells reg-
ulate and coordinate these aggregate properties has been hampered by the difficulty of
accurately measuring them, especially in a tissue context (7). Technological tools to
determine single cell mass and volume accurately has been both a driving force but a
limited one for addressing these questions. For instance, several methods have been
developed for single cell measurement of either cell volume (8–11), cell mass (12–18),
or surrogate variables that correlate with cell size (4, 19, 20) (Table 1). Despite the gen-
eral assumption that cell mass and volume are proportional to each other, cell volume
can dramatically deviate from cell mass (5). As the importance of the macromolecular
density in cytoplasm has become a focus of interest, a few technologies have been
developed to quantitatively characterize the density of the intracellular milieu (21, 22)
and subcellular compartments, such as the phase separated compartments (23, 24).
However, existing methods lack subcellular resolution or are limited in their applicabil-
ity in a tissue context. As a result, our current knowledge on the regulation of cell size
and cytoplasmic density is drawn from bulk measurements, average behavior of cell
populations, suspended or cultured cells in vitro, or from measurement of proxy varia-
bles. Furthermore, current single cell mass measurements only provide total biomass
and cannot differentiate between protein and lipid mass.
To develop a method that overcomes the limitations of existing approaches, we

turned to stimulated Raman scattering (SRS) microscopy (25), which is ideal for quan-
titative analysis of cellular materials in tissue. However, existing SRS approaches suffer
from heterogeneous signal attenuation due to light scattering in thick samples, limiting
their utility for accurate quantification of single cell mass in situ (26). Here we report
an alternative approach that enables accurate determination of single cell mass and
cytoplasmic mass concentration in live or fixed tissue by computationally removing the
effect of light scattering. The key step in normalized Raman imaging (NoRI) is the
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conversion of the SRS images to absolute concentrations
through normalization of the undesirable intensity variation
caused by sample light scattering. Hence, we name this method
normalized stimulated Raman scattering imaging. Computing
the sum of chemical components, including water, is the key
element in converting chemical compositions to absolute con-
centration in a way comparable to those demonstrated in other
Raman modalities (27, 28).
NoRI provides two important advantages over existing meth-

ods of single cell mass measurement: Protein mass, lipid mass,
and water content can be measured separately, and in tissue
samples with three-dimensional (3D) resolution (SI Appendix,
Fig. S4). Absolute calibration enables cross-comparison across
samples and enables further specification of features without
internal reference. Using NoRI, we demonstrate that protein
and lipid concentrations are reproducible cellular phenotypes,
that they are specific to cell types, and that they change with
physiological state. NoRI can enable previously inaccessible sin-
gle cell mass measurements and will allow many open biological
questions to be addressed.

Principle of NoRI

We visualize proteins and lipids under a custom-built SRS
microscope (Fig. 1A) by imaging the Raman peaks at 2,935
and 2,853 cm�1 originating from methyl groups in proteins
and methylene groups in fatty acids (29). For the normalization
of light-scattering, SRS signals from water were measured at the
3,420 cm�1 peak of the oxygen–hydrogen stretching modes (Fig.
1C). These three Raman bands are referred to as the CH3 band,
the CH2 band, and the H2O band in the rest of this manuscript
(Fig. 1B). The different SRS intensities of proteins, lipids, and
water at these bands enable spectral decomposition to protein,
lipid, and water (30). The mapping from the CH2, CH3, and
H2O SRS intensity to the protein, lipid, and water concentration
can be expressed with a 3 × 3 matrix, which we refer to as the
“decomposition matrix.” Concentrations computed by conven-
tional methods of spectral decomposition are affected by light
scattering that varies within the sample and between different
samples and limits quantitative interpretation. To overcome this

limitation, we took advantage of the fact that water, proteins, and
lipids account for nearly 100% of the chemical composition of
most biological samples (34). Hence, we scale the intensity of
each component to make the sum of their volumes equal 1
(which is 100% vol/vol) at each voxel. This results in the absolute
concentration of protein, lipid, and water in the unit of volume
fractions. As an example, Fig. 1D shows the x–y and orthogonal
cross-sections of a live A7 cell’s SRS intensity images prenormali-
zation. Especially, the shadows in the orthogonal view of the
H2O band highlights the attenuation due to diffraction at the cell
edge and intracellular lipid droplets. By contrast, NoRI normaliza-
tion eliminates these artifacts and provides the absolute concentra-
tion of protein, lipid, and water (Fig. 1E and SI Appendix, Fig.
S18).

To enable this normalization, we devised a calibration and
sample imaging procedure that preserves the quantitative rela-
tion between the SRS intensity and concentration (in vol/vol)
by eliminating other sources of intensity variation. Specifically,
the decomposition matrix is measured from the calibration
standard samples of known protein, lipid, and water concentra-
tions using the SRS microscope (SI Appendix, Fig. S5). We
used bovine serum albumin (BSA) as a protein standard and
dioleoylphosphatidylcholine (DOPC) as a lipid standard. Since
BSA has similar methyl and methylene group frequency to ver-
tebrate proteomes (SI Appendix, Fig. S16), and DOPC is the
most abundant lipid species in lipid membranes, they provide a
practical and economical approximation of average proteome
and phospholipids. To capture the intrinsic difference in
Raman spectra between protein, lipid, and water samples, we
measured them under identical optical condition. The calibra-
tion images were acquired with the objective lens and the con-
denser lens at the same positions, and the intensity variation
caused by the pointing direction of the laser beams was compu-
tationally corrected from the two-dimensional (2D) intensity
profile at each tunable-laser wavelength (“flat-field correc-
tion mask”) (SI Appendix, Supplementary Methods). Once the
decomposition matrix and flat-field correction mask are deter-
mined from the calibration samples, biological samples such as
live or fixed cells, tissue slices, and small organisms in an
unstained or fluorescence-labeled state can be measured. Once

Table 1. Comparison of NoRI and existing methods for single cell biomass measurement

Method Measured parameter

Measurement characteristics Sample types

ReferencesMass Mass density
Absolute

quantification*
Subcellular
resolution

Chemical
composition

Suspended
cells

Adherent
cell culture

Cells in
tissue

Live
sample

NoRI (Normalized
Raman Imaging)

Biomass composition
and concentration

� � � � � � � � � This work

SRS (Stimulated
Raman Scattering)

Biomass composition
and concentration

� � ✕ � � � � � � 25, 29

SMR (Suspended
Microchannel
Resonator)

Buoyant mass,
volume, density

� � � ✕ ✕ � ✕ ✕ � 12–14, 21

QPI (Quantitative
Phase Imaging)

Refractive index (dry
mass density)

� � � � ✕ � � ✕ � 15–17, 23, 24

Particle tracking, FCS,
FRAP

Diffusion ✕ � ✕ � ✕ � � � � 9, 71

Inertial picobalance Buoyant mass � ✕ � ✕ ✕ ✕ � ✕ � 18
Electron microscopy Number and volume

of cellular structures
� � ✕ � ✕ � � � ✕ 8, 9

Light microscopy Protein or lipid stain,
volume of cell or

nucleus

� � ✕ � � � � � � 4, 10, 11, 72, 73

Flow cytometry Light scattering,
protein stain, UV

absorption

� ✕ ✕ ✕ � � ✕ ✕ � 19, 20

*Absolute quantification of mass or mass density in physical units. Volume, area, or intensity in arbitrary units are considered semi-quantitative or relative measurements of biomass.
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the raw SRS intensity images are acquired at the CH3, CH2,
and H2O bands (Fig. 1D), the flat-field correction mask gener-
ated in the calibration step is applied to the sample images,
then the decomposition matrix is applied to each voxel to
obtain the unnormalized image of protein, lipid, and water
components. Then, normalization is performed at each voxel
by dividing by the sum of the prenormalized protein, lipid, and
water images (SI Appendix, Fig. S7). The mass concentrations
of proteins and lipids is estimated from the volume concentra-
tion by multiplying with the mass density of pure protein or
lipids (Fig. 1E). We used the densities of BSA and DOPC (1.3643
g/mL and 1.0101 g/mL), respectively, for the mass concentration
conversion. We note that lipid droplets, which are composed of
neutral lipids and cholesterol esters, have a shifted CH2 band
compared to phospholipids, and, therefore, spectral decomposi-
tion based on DOPC spectrum is not ideal. On the other hand,
lipid droplets occupy a distinct nonaqueous phase and the NoRI
output provides an easy means to segment lipid droplets from
the rest of the cytoplasm by the thresholding of high lipid con-
centration (Fig. 2B and SI Appendix, Fig. S10). Therefore, we
distinguish lipid droplets from phospholipids by thresholding
and converted lipid droplet’s volume to mass using the density
of glyceryl trilinoleate (0.925 g/mL).
We next applied NoRI measurement to solution samples of

known concentrations to characterize the method’s accuracy in

the presence of signal attenuation of diverse origins, including
optical aberration from refractive index mismatching and
imperfections and temporal instability of the optical system.
Objective lenses are typically designed to optimally perform
with an immersion media of a specific refractive index, and
refractive mismatch of the sample causes optical aberration. For
example, SRS intensity of 36% BSA solution sandwiched
between a cover glass and a glass slide decreases with imaging
depth because the BSA solution has a much higher refractive
index than the intended immersion medium of the objective
lens (SI Appendix, Fig. S8A). NoRI normalization corrects for
this effect and the resulting concentration is homogenous in
the entire sample volume (SI Appendix, Fig. S8B). Intensity var-
iation caused by imperfections of the optical system was also
removed by the normalization as demonstrated in the water
component image of the pure water sample (SI Appendix, Fig.
S8 C and D). Environmental instability including ambient tem-
perature drift may cause fluctuations in SRS intensity, thereby
hampering time-dependent measurements. As shown in the
time trace of SRS signals of a BSA solution at the CH3, CH2,
and H2O bands, the intensity fluctuated at about 2% of the
mean during 2 h (SI Appendix, Fig. S8 E and F). A conven-
tional approach for normalizing would divide the CH3 and
CH2 band signals with that of the H2O band, which indeed
reduces the temporal fluctuations (SI Appendix, Fig. S8G). But
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Fig. 1. Principles of NoRI. (A) Schematic of the spectral-focusing stimulated Raman scattering microscope. Pump and Stokes femtosecond pulse lasers are
chirped by dense flint (DF) glass and intensity modulated by an electrooptical modulator (EOM). Motorized delay is used to fine tune the Raman band. Trans-
mitted pump laser intensity is detected in the transside. (B) Raman spectra of protein, lipid, and water measured by spectral-focusing stimulated Raman
scattering microscope. See SI Appendix, Supplementary Methods for the acquisition parameters. Three Raman bands are measured in NoRI: CH3 (red circle,
2,935 cm�1), CH2 (black square, 2,853 cm�1), and H2O (blue X, 3,420 cm�1) bands. (C) Representative SRS images of a live A7 cell at the CH3, CH2, H2O, and
off-peak Raman bands. (Scale bars, 20 μm.) (D) Orthogonal view of the SRS images in the CH3, CH2, and H2O Raman bands. (Scale bars, 20 μm.) (E) Orthogo-
nal view of the NoRI measurement of protein, lipid, and water concentrations. (Scale bars, 20 μm.)
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dividing by the water signal renders the relation between
intensity signal and analyte concentration nonlinear (for
example, the normalization would diverge when there is little
water, as in lipid droplets). NoRI normalization removes the
temporal fluctuation while retaining linearity in concentration
measurement (SI Appendix, Fig. S8H). We imaged a titration
series of BSA solutions and DOPC solutions to demonstrate
the linearity of NoRI concentration measurements (SI
Appendix, Fig. S9). The NoRI measurements show excellent
agreement with the actual concentration of solutions, with
sensitivity of ∼15 mg/mL as measured by the SD of the BSA
solution sample. Since there is no existing technique to
benchmark in situ measurement of the protein and lipid mass
of a single cell, we compared the dry mass (sum of protein
and lipid concentration) measurement by NoRI with refrac-
tive index tomography (Tomocube, HT-2) (35), which is cur-
rently the only other method that can measure local mass con-
centration with subcellular resolution. When we measured
fixed HeLa cells by both techniques, we found that dry mass
concentration measured by NoRI was in good agreement with
the dry mass concentration from refractive index tomography
(Pearson correlation coefficient r = 0.736 from SI Appendix,
Fig. S12).

Cellular Protein and Lipid Concentration
Changes with a Cell’s Physiological State

By providing protein, lipid, and water concentration measure-
ments of a cell or a subcellular compartment, NoRI opens up
possibilities in the investigation of single cell physiology. Also,
the mass of a cell or nucleus can be computed by integration of
the protein and lipid concentration over the volume. Further-
more, nucleus and lipid droplets can be segmented from NoRI
images without the use of staining due to their specific lipid
concentration profile (Fig. 2A): The nucleus can be recognized
from the absence of lipid and lipid droplets from their high
lipid concentration (Fig. 2B and SI Appendix, Fig. S13). We
demonstrate here several potential applications.
Cells tightly maintain cytoplasmic concentration, as it is

directly coupled to cell volume and impacts macromolecular
crowding (7, 36), structural integrity of tissue, and is even
reported to impact stem cell fate (37). Though the feedback
mechanism for maintaining cytoplasmic concentration against
external osmotic perturbation is relatively well understood (38),
little is known about autonomous change of cytoplasmic
concentration under physiological conditions (7). Here we
demonstrate that NoRI is ideally suited to probe physiologically
controlled cytoplasmic concentration changes. An example of a
cell-autonomous change of cytoplasmic concentration occurs
during mitosis (39) (Fig. 2E). As a mitotic cell rounds up, a
process important for accurate chromosome segregation (40),
the cytoplasmic concentration changes due to the forces of
osmotic pressure and the contraction of the actomyosin cortex
(41, 42). Prior reports of cytoplasmic concentration changes
during mitosis required two separate measurements of the sin-
gle cell’s total dry mass and volume; the cytoplasmic concentra-
tion was then calculated by dividing the mass by the volume.
This calculation limited the types of samples that could be ana-
lyzed to either cell suspensions or sparsely plated monolayers.
By contrast, NoRI enables a direct measurement of cytoplasmic
concentration and is much more flexible for different sample
preparations. By distinguishing proteins from lipids, it provides
additional information. To demonstrate this use of NoRI,
we measured the cytoplasmic protein, lipid, and dry mass

concentration of dividing MDCK (Madin–Darby canine kid-
ney) cells in a confluent culture (Fig. 2E). The coefficient of
variation of protein concentration or dry mass concentration
was less than 0.07, showing that cytoplasmic concentration is
tightly controlled. Also, in agreement with previous reports, the

Fig. 2. Label-free measurement of protein and lipid shows dilution of
cytoplasm in mitotic cells. (A) Volumetric NoRI measurement of a live A7
cell. (Scale bar, 10 μm.) (B) Volumetric visualization of the protein and lipid
distribution in the cell. Lipid is further classified as membrane lipids in the
aqueous phase of the cytosol and lipid droplets. (C) Label-free volumetric
segmentation of a whole cell, nucleus, and lipid droplets from NoRI data.
See SI Appendix, Supplementary Methods for the segmentation method. (D)
Distribution of protein and lipid concentration within the volume of the
whole cell, cytoplasm excluding lipid droplets, and the nucleus in C. (E) Rep-
resentative live MDCK cells in mitosis and cytokinesis. (Scale bars, 10 μm.)
(F) NoRI images of mitotic and interphase cells. Mitotic cells have a more
diluted cytoplasm compared to interphase cells, as revealed by lower pro-
tein and lipid concentrations and a higher water concentration (water:
interphase 0.889 ± 0.008 g/mL, mitosis 0.905 ± 0.006 g/mL, P < 0.0001; dry
mass: interphase 0.144 ± 0.009 g/mL, mitosis 0.123 ± 0.007 g/mL, P < 0.0001;
protein: interphase 0.123 ± 0.009 g/mL, mitosis 0.105 ± 0.007 g/mL, P <
0.0001; and lipid: interphase 0.021 ± 0.005 g/mL, mitosis 0.019 ± 0.002 g/mL,
P = 0.0052). The cytoplasmic concentration recovers toward the interphase
value during cytokinesis (water 0.893 ± 0.008 g/mL, dry mass 0.138 ± 0.010
g/mL, protein 0.117 ± 0.008 g/mL, lipid 0.022 ± 0.003 g/mL). Lipid droplets
are excluded from the lipid concentration calculation. The number of cells in
interphase, metaphase, and cytokinesis are n = 81, n = 57, and n = 24,
respectively. (G) Relative difference of cytoplasmic density, here expressed in
terms of the relative volume change (“swelling”) based on the degree that a
cell of interphase cells’ median cytoplasmic density would have to change to
achieve the observed difference in cytoplasmic water concentration. Mean
and SD of swelling are 0.5 ± 6.8%, 17.0 ± 6.8%, and 4.2 ± 7.3% for interphase,
mitosis, and cytokinesis, respectively (P < 0.001 for interphase and mitosis,
P = 0.020 for interphase and cytokinesis). *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001.
n.s. is not significant with P > 0.05.
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cytoplasmic dry mass concentrations decreased from interphase
to mitosis and recovered after cytokinesis (Fig. 2F). The average
concentration reduction during mitosis was equivalent to 17%
volume swelling relative to the interphase size (Fig. 2G) and
was comparable to previous reports (22, 43).
Another factor that could influence the cytoplasmic concen-

tration of proteins and lipids is substrate stiffness. Typically,
mammalian cells cultured on a stiff substrate spread to a wider
area, take a flatter shape, and have higher cortical tension com-
pared to cells cultured on softer substrates. Despite their larger
area, cells on a stiff substrate might have changes in cell volume
disproportional to protein content, leading to changes in cyto-
plasmic concentration (37, 44). Prior studies suggested that the
cell volume change due to mechanical effects of the substratum
is ion channels and actomyosin cytoskeleton dependent (37),
and the role of cortical actomyosin for cell volume regulation is
mediated by the YAP/TAZ pathway (44). Using NoRI, we
could demonstrate similar phenomena in A7 cells cultured on
polyacrylamide gels of different stiffness overnight (Fig. 3A).
A7 cells on stiffer substrate had larger area (Fig. 3B) and smaller
volume (Fig. 3C), which is consistent with the prior studies.
However, counterintuitively, water concentration increased
(Fig. 3D) and the cytoplasmic concentrations for total dry
mass, protein, and lipid all decreased (Fig. 3 E–G). These
results imply a decrease in the cell mass and thereby reveals
additional complexity in the effects of mechanical stimuli
on cells.
We also measured cytoplasmic concentration changes during

cellular senescence. Cellular senescence is accompanied by a wide
array of changes, including hypertrophy (45), significant cyto-
plasm dilution (46, 47), and accumulation of lipids (48). Dilu-
tion of cytoplasm is a poorly understood phenomena, and might
play a crucial role in cellular aging (46). Cytoplasmic dilution
was previously studied using SMR (suspended microchannel res-
onator), diffusion rate imaging, and ultracentrifugation, but
these methods are either constrained to suspended cells or non-
physiological preparation conditions and lack the resolution to
discern distinct processes such as lipid accumulation. NoRI pro-
vides a flexible way to observe cytoplasmic and lipid density
changes in senescence. To explore senescence, we performed
NoRI imaging of live MDCK cells and A7 cells induced to
undergo senescence by 48 h doxorubicin treatment (100 ng/mL)
(Fig. 4 and SI Appendix, Fig. S19). Both MDCK cells and A7
cells showed reduced cytoplasmic dry mass and protein concen-
trations in senescence compared to proliferating interphase cells
(Fig. 4 C and D and SI Appendix, Fig. S19 C and E) in agree-
ment with the prior report. In addition to a decrease in dry
mass concentration, senescent cells achieve more significant
net hypertrophy due to an increase in cell volume (Fig. 4E
and SI Appendix, Fig. S19F). We found that lipid accumula-
tion contributed a significant portion of the net hypertrophy
in MDCK cells: The total lipid concentration increased from
0.023 ± 0.003 g/mL to 0.047 ± 0.004 g/mL (Fig. 4D), the
total lipid mass increased from 50.5 ± 14.3 pg to 1,377.3 ±
588.6 pg (Fig. 4E), the proportion of lipid to protein
increased from 0.53 ± 0.13 to 1.44 ± 0.34 (Fig. 4F), and
both of the respective concentrations of lipid droplets
and cytosolic membrane lipid increased from 3.6 ± 1.5% and
2.2 ± 0.3% to 5.2 ± 2.1% and 4.4 ± 0.4% (Fig. 4G) with
senescence. However, this disproportionate lipid accumula-
tion was cell-type dependent as senescent A7 cells showed
balanced accumulation of protein and lipid (SI Appendix,
Fig. S 19F), suggesting that there may be heterogeneity in
metabolic reprogramming of cellular senescence.

Cellular Protein and Lipid Concentration Are
Specific to Cell and Tissue Types In Vivo

We noted that different cell lines display different protein and
lipid concentrations even in identical culture conditions, sug-
gesting cell-type specificity of these properties (Fig. 5 A and B).
To extend this observation in animal cell types, we acquired
protein and lipid concentration profiles in a diverse array of
mouse tissues. Indeed, different cell types displayed distinct
protein and lipid concentrations: NoRI correctly identified the
differences in lipid concentrations in slow and fast skeletal mus-
cle fibers (49) (Fig. 5 C and D). In the kidney, tubule cells
showed higher lipid concentration, presumably due to densely
packed mitochondria (50), compared to glomeruli (Fig. 5 E
and F). Some intracellular organelles showed distinct protein

Fig. 3. Cytoplasmic density increases in cells cultured on a soft substrate.
(A) Representative images of live A7 cells cultured for 24 h on 200 Pa or
6,300 Pa polyacrylamide gels. (Scale bars, 20 μm.) (B) Cell area is greater on
the stiff substrate (P < 10�7). Mean and SDs are 740 ± 250 μm2 (n = 46)
and 1,264 ± 571 μm2 (n = 67) for 200 Pa and 6,300 Pa, respectively. (C) Cell
volume is smaller on the stiff substrate (P = 0.033). Mean and SDs are
5,588 ± 1,672 μm2 (n = 46) and 4,921 ± 1,576 μm2 (n = 67) for 200 Pa and
6,300 Pa, respectively. (D–F) Concentration of water, dry mass (equal to the
sum of protein and lipid), protein, and lipid are quantified in the single cell
cytoplasm excluding lipid droplets. (D) Cytoplasmic water concentration is
higher on the stiff substrate (P < 10�7). Mean and SDs are 0.9098 ± 0.0098
g/mL (n = 61) and 0.9171 ± 0.0058 g/mL (n = 84) for 200 Pa and 6,300 Pa,
respectively. (E) Cytoplasmic dry mass concentration is lower on the stiff
substrate (P < 10�6). Mean and SDs are 0.1147 ± 0.0118 g/mL (n = 61) and
0.1065 ± 0.0070 g/mL (n = 84) for 200 Pa and 6,300 Pa, respectively. (F)
Cytoplasmic protein concentration is lower on the stiff substrate (P =
0.018). Mean and SDs are 0.0899 ± 0.0085 g/mL (n = 61) and 0.0869 ±
0.0055 g/mL (n = 84) for 200 Pa and 6,300 Pa, respectively. (G) Cytoplasmic
membrane lipid concentration is lower on the stiff substrate (P < 10�8).
Mean and SDs are 0.0248 ± 0.0057 g/mL (n = 61) and 0.0196 ± 0.0040 g/mL
(n = 84) for 200 Pa and 6,300 Pa, respectively.

PNAS 2022 Vol. 119 No. 17 e2117938119 https://doi.org/10.1073/pnas.2117938119 5 of 11

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2117938119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2117938119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2117938119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2117938119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2117938119/-/DCSupplemental


and lipid concentration profiles compared to the rest of the
cytoplasm as in the lipid-free cell nuclei or the protein-dense
zymogen granules of pancreatic acinar cells (Fig. 5 G and H).
The distinct protein and lipid concentrations of different cell
types and organelles enables interpretation of tissue microanat-
omy in a way that can be more revealing than conventional
hematoxylin and eosin–stained histology, specifically with
regards to lipid content, which is invisible in conventional his-
tology. Furthermore, the actual protein and lipid concentra-
tions can provide novel information about the physiological or
pathological state of the tissue. We demonstrated the potential
utility of such quantitative protein and lipid concentration
measurements in the following neuroscience applications.
First, the quantitative difference in cytoplasmic concentration
revealed hidden heterogeneity in an established cell type, the
Purkinje neurons of cerebellum. These cells, identified by
GAD67 expression (Fig. 6B), showed nearly threefold varia-
tion in the cytoplasmic concentration (Fig. 6 C and D), in
which lipid and protein concentrations changed proportion-
ately (Fig. 6C). This variability was reproducible in different
mouse strains (SI Appendix, Fig. S21B). To rule out the possi-
bility of a fixation artifact, we performed live tissue imaging

of acute brain slices and confirmed that this variability is pre-
sent in live Purkinje neurons (SI Appendix, Fig. S21A) in the
same type of preparations used for recording action potentials
of these cells. The difference in cytoplasmic concentration
could be caused by different levels of protein synthesis or by
dilution with water through an osmotic mechanism. There-
fore, we sought to determine whether the dense cells have
more total dry mass than the light cells or were merely more
swollen at the same dry mass. For this purpose, we acquired a
volumetric NoRI image of the Purkinje layer (Fig. 6E) and
traced the cell body of the Purkinje neurons (Fig. 6F). A total
of 12 cells were segmented from Fig. 6E and each cell’s vol-
ume, mean cytoplasmic concentration (the sum of protein
and lipid concentrations), and total dry mass (the sum of pro-
tein mass and lipid mass) were calculated. We found that
cytoplasmic concentration decreased with cell volume (Pear-
son’s R = �0.95), while the total dry mass changed little with
cell volume (Pearson’s R = 0.46). This distinction was partic-
ularly clear in larger cells with a dry mass greater than 2,500
fL, where the total mass was independent of volume (Pear-
son’s R = 0.09). This suggests that an osmotic mechanism
underlies the variability of cytoplasmic density.
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Fig. 4. Cytoplasmic dilution and lipid accumulation in senescent cells. (A) Representative images of control and senescent MDCK cells. Senescence is
induced by a 48-h doxorubicin treatment. (Scale bars, 30 μm.) (B–D) Concentrations of water, protein, membrane lipid, and dry mass of single MDCK cells.
Lipid droplets are excluded from lipid and dry mass concentrations. Dry mass is calculated by adding protein mass and lipid mass. Control n = 63, senescent
n = 31. (B) Water concentration increases in senescent MDCK cells (P < 10�3). Mean and SD of control is 0.899 ± 0.009 g/mL, senescent is 0.906 ± 0.010 g/mL.
(C) Dry mass concentration decreases in senescent MDCK cells (P < 10�9). Mean and SD of control is 0.130 ± 0.011 g/mL, senescent is 0.112 ± 0.013 g/mL. (D)
Protein concentration decreases (P < 10�35) and lipid concentration increases (P < 10�47) in senescent MDCK cells. Mean and SD of control: protein 0.106 ±
0.009 g/mL, lipid 0.023 ± 0.003 g/mL and senescent: protein 0.065 ± 0.009 g/mL, lipid 0.047 ± 0.004 g/mL. (E) Senescent cells undergo dramatic hypertrophy in
both protein mass (P < 10�31) and lipid mass (P < 10�31). Single cell protein mass and lipid mass were calculated by integrating the respective concentration
over cell volume (protein: control 231.9 ± 62.7 pg and senescent 1,891.0 ± 716.3 pg; lipid: control 50.5 ± 14.3 pg and senescent 1,377.3 ± 588.6 pg). (F) Ratio of
lipid to protein increases in senescent MDCK cells (P < 10�32). Total lipid is the sum of lipid droplet and membrane lipids. Lipid droplet mass is calculated from
lipid droplet volume assuming density of neutral lipid 0.9 g/mL (control 0.53 ± 0.13 and senescent 1.44 ± 0.34). (G) Senescent MDCK cells contain an increased
mass of lipid droplets (P < 10�4) and membrane lipids (P < 10�47) (control: lipid droplets 3.6 ± 1.5% [vol/vol], membrane lipids 2.2 ± 0.3% [vol/vol]; senescent:
lipid droplets 5.2 ± 2.1% [vol/vol], membrane lipids 4.4 ± 0.4% [vol/vol]). Lipid droplets are detected by thresholding lipid concentration >0.1 g/mL. Membrane
lipid quantity is measured by integration of lipid concentration over the cell volume excluding lipid droplets. ***P ≤ 0.001.
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Tissue-Type–Specific Protein and Lipid
Concentration Changes with Disease

We explored the utility of protein and lipid measurement as a
novel quantitative biomarker of disease pathology using murine
models of Alzheimer’s disease (51) (Fig. 7). SRS microscopy
had been previously applied to this model and showed the
capability to detect amyloid plaques by the CH3 Raman band
(52, 53). Furthermore, it was shown that the CH2 Raman
band can detect lipid aggregation (52, 53) in the corona of
senile plaques (the area surrounding amyloid plaques) (54).
Consistent with these prior reports, we observed amyloid
plaques surrounded by lipid aggregates in the APP-PS1 brain
but not in the wild-type brain (Fig. 7 A and B). Since NoRI
provides protein and lipid concentrations, we asked whether
automated pathology analysis can be performed utilizing the
absolute nature of NoRI data. In this regard, we found that the
protein and lipid concentrations of cell bodies, white matter,
and neuropil (dense entanglement of dendrites, unmyelinated
axons, and synapses that surround cell bodies in gray matter)
are similar between normal brain tissue and the normal appear-
ing areas of APP-PS1 brain tissue. The consistency of concen-
tration profiles enabled us to detect amyloid plaques and lipid
aggregates by using a simple unsophisticated segmentation
method (SI Appendix, Supplementary Methods, section 6.2).
Briefly, cell bodies and white matter were detected by thresh-
olding lipid images at <0.030 g/mL and at >0.147 g/mL,
respectively. Trainable WEKA segmentation, an ImageJ
machine learning plug-in (55), was used to segment amyloid
plaques in protein images and neuropil in lipid images. The
remaining areas of intermediate lipid concentration were seg-
mented to lipid aggregates and myelin using their morphologi-
cal differences (56). In total, we segmented the tissue into five
classes—protein plaques, lipid aggregates, neuropil, myelin, and
cell body (Fig. 7 C and D), utilizing their distinct absolute

concentration profiles and morphologies. The lipid aggregates
were different from lipid droplets based on their much lower
lipid concentration (Fig. 7E), which is consistent with the
model of neurite dystrophy origin (54). A biological replicate
of APP-PS1 showed a similar concentration profile in the
lesions, whereas an alternative Alzheimer mouse model 5xFAD
showed higher lipid concentration than those in APP-PS1 (Fig.
7 F and G and SI Appendix, Fig. S22). Whether the quantita-
tive difference in the concentrations consistently signifies differ-
ences of pathophysiology in neurite dystrophy will be the sub-
ject of future work.

Discussion

We report here on a method, NoRI, which enables quantifica-
tion of protein and lipid biomass concentrations at high spatial
resolution in three-dimensional samples. Compared to existing
methods, NoRI’s advantage is its in situ measurement capabil-
ity to distinguish protein biomass and lipid biomass. Its work-
ing principle is based on the realization that water, protein, and
lipids occupy nearly 100% (vol/vol) of wet biological samples.
Although unaccounted components such as polysaccharides
could in principle limit the accuracy of NoRI measurement,
the size of this error is small in typical mammalian cells where
the three most abundant components (water, protein, and
lipid) account for ∼93% (wt/vol) of the wet mass (34). More-
over, the absolute size of the error due to unaccounted compo-
nents scales with the absolute concentrations of the respective
components. For example, when a sample has 75% (wt/vol)
water, 18% (wt/vol) protein, and 7% (wt/vol) polysaccharides,
the error in normalization is equal to or less than 7% of the
respective absolute concentrations, i.e., <0.0525 g/mL for
water and <0.0126 g/mL for proteins. We note that the
absence of water in lipid droplets does not impede the normali-
zation even though we utilize the H2O band for normalization.
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Fig. 5. Different cell and tissue types have distinct protein and lipid concentrations. (A and B) Protein and lipid concentration distribution in fixed HeLa cells,
live A7 cells, and live interphase MDCK cells. (Scale bars, 50 μm.) The boxplot marks the median, 25% and 75% quartiles of fixed HeLa cell concentrations
with whiskers marking 5% and 95% ranges. The boxplot is reproduced in D, F, and H for comparison. (C and D) Protein and lipid concentration of lipid-rich
type I myofibers (n = 56) and lipid-lean type II myofibers (n = 28) in the traverse section of fixed murine skeletal muscle. (Scale bar, 20 μm.) Type I fibers
have higher lipid concentrations than type II fibers. Protein concentrations are similar in the two types. (E and F) Fixed mouse kidney tissue. Glomerulus and
tubules can be distinguished by distinct protein and lipid concentrations. (Scale bar, 100 μm.) (G and H) A pancreatic islet from fixed mouse pancreas tissue.
(Scale bar, 100 μm.) Acinar cells contained large number of protein-dense vesicles, which are most likely zymogen granules for storing and secreting diges-
tive enzymes. Cell nuclei are distinguishable by the absence of lipid. Protein-dense membrane surrounds blood vessels and ducts.
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This is because the reference is the sum of all components,
which is, in this case, dominated by lipid signals. Owing to its
simplicity, this approach can be combined with other formats
of SRS microscopy, spectral separation methods, and for the
analysis of chemical components in addition to protein, lipids,
and water. For example, the algorithm can be combined with
an epi-detection SRS microscope (57) to achieve in vivo mea-
surement in live animals. Since nucleic acid displays a distinct
peak in the high-wavenumber Raman band, which permits
spectral separation from proteins and lipids (58), the NoRI
normalization method can be used to measure the absolute
concentration of nucleic acids along with protein, lipids, and
water by measuring four Raman peaks of protein, lipids, water,
and nucleic acids (SI Appendix, Fig. S15). To implement the

NoRI algorithm, quantitative reproducibility is required in the
SRS instrumentation (SI Appendix, Fig. S8). To this end we
built an SRS microscope with a chirped femtosecond pulse laser
based on the spectral-focusing principle (59), with particular
specifications to meet such reproducibility requirements (SI
Appendix, Supplementary Methods), and obtained the sensitivity
of ∼0.015 g/mL. The sensitivity can be further improved by
averaging (SI Appendix, Fig. S14B). The spatial resolution of
NoRI is determined from the resolution of the SRS micro-
scope, which is similar to that of a two-photon microscope
(25). The theoretical resolution at 770 to 805 nm wavelength
was 0.57 μm and 1.58 μm in lateral and axial dimensions.
Actual resolution inside tissue is usually lower due to the distor-
tion of the laser focus by the sample and extended in z dimen-
sion owing to the local refractive index. The spatial resolution
in tissue, as measured from the intensity profile of a small lipid
droplet embedded at the 44-μm depth of a 100-μm-thick tis-
sue, was <1.18 μm and 1.90 μm in lateral and axial dimen-
sions, respectively (SI Appendix, Fig. S4). The acquisition rate
of NoRI imaging is limited by the time required for taking
three frames of SRS imaging. Each SRS image takes 1 s per
frame. It takes an additional 10 s each time the laser wavelength
is switched to change the Raman band. Hence, the slow switch-
ing time of wavelength limits applications to rapid events that
happen on the order of tens of seconds. For live cell imaging,
2D NoRI images can be acquired without incubation cham-
bers. But a stage-top incubation chamber was essential for 3D
live cell volumetric imaging to avoid rapid cell shape change
from stress. When scanning a large area or volume of stable
samples (e.g., fixed tissue), acquisition time can be minimized
by acquiring all images in one Raman band at once. Pigmented
samples such as red blood cells or melanocytes induce two-
photon absorption (TPA), which interferes with faithful SRS
intensity measurement (60). TPA should either be measured
from the off-Raman band and computationally subtracted from
the Raman band signals (61) or eliminated by bleaching the
pigments (62) (SI Appendix, Fig. S17). As we use light sources
in 770 to 805 nm and 1,045 nm, which fall in the near-
infrared window of biological tissues, dispersion is not significant
within the imaging depth (SI Appendix, Supplementary Methods,
section 9), yet some biological samples exhibit optical anisotropy
and display different SRS intensities in a polarization sensitive
way (63). The polarization dependence may provide additional
information and is left for future work.

Both actomyosin cortex contraction and water influx are
required for mitotic rounding (39, 41). Yet the mechanism of
water regulation during mitosis is relatively less well understood
compared to the cytoskeletal components. A few proteins,
including membrane proteins and ion channels, had been pre-
viously identified to reduce mitotic cell swelling in an RNAi
screen where cortical stiffening and volume change was mea-
sured using atomic force microscopy (AFM) and confocal
microscopy (64). Phenotypic screening using AFM is primarily
aimed at mechanical properties such as stiffness and, for charac-
terizing water flux; intracellular pressure is calculated by com-
bining the force measurement with a biophysical model
(Laplace law applied to the 3D shape of the cell) (39). Cyto-
plasmic concentration measurements by NoRI provide a pow-
erful alternative for probing components of intracellular water
regulation. In this report, we observed dilution of cytoplasm in
mitotic cells, which was consistent with previous reports by
other groups (22, 43) (Fig. 2). However, there are also contra-
dicting reports in which concentration of cytoplasm before or
during mitosis was observed (17, 65, 66). We note that the

Fig. 6. Bimodal cytoplasmic densities of Purkinje cells in the cerebellum.
(A) NoRI image of fixed mouse cerebellum lobe 10. (Scale bar, 200 μm.)
(Inset) Detailed view of boxed area. (Inset Scale bar, 30 μm.) (B) Confocal
fluorescence of GAD67-GFP in the same area as A. Purkinje cells are identi-
fied by expression of GAD67-GFP. (C) Protein and lipid concentration distri-
bution of all Purkinje cells (blue density plot) and individual Purkinje cells
(open circles). The boxplot displays the concentration distribution of fixed
HeLa cells in Fig. 5B for comparison. (D) GAD67-GFP expression level corre-
lates with dry mass concentration in Purkinje cells (n = 38). GAD67-GFP
negative cells from the Purkinje layer are also shown (n = 4). (E) Volumetric
NoRI measurement of fixed mouse cerebellum. (Scale bar, 100 μm.) (F) Cell
body of Purkinje neurons are manually segmented from the label-free
NoRI image in E. Cell boundaries are determined from the distinct protein
and lipid concentration of cells compared to the surrounding tissue. (G)
Volumetric visualization of the protein and lipid distribution in the cells. (H)
Cerebellar Purkinje cells decrease in cytoplasmic dry mass density with
increasing cell body volume (n = 12). (I) Dry mass of the cell body of the
cells shown in D.
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cells that swell during mitosis have an interphase cytoplasm
concentration between 0.095 and 0.190 g/mL and reduced
cytoplasm concentration of 0.085 to 0.167 g/mL during meta-
phase [HT29 cells (43), L1210 cells (22), and MDCK cells in
this study]. By contrast, the cells in the latter reports, where
cytoplasm was concentrated during mitosis, started at an extremely
low interphase cytoplasm concentration of 0.025 g/mL and
increased to a metaphase cytoplasm concentration of 0.06 g/mL
(mouse embryonic stem cells) (17). The discrepancy may be
explained if the absolute cytoplasmic density rather than relative
volume change is regulated during mitosis. Whether an optimal
cytoplasmic density exists for mitosis is an open question which
NoRI is well suited to address.
Cell shape can dramatically change depending on the stiff-

ness of the substrate and this can be accompanied by cell vol-
ume change (44). Cells on soft substrates usually appear more
round, while cells on stiff substrates spread to a larger area. But

the spreading cells could actually have smaller volumes, if they
had reduced height (67, 68). Such cell volume changes may
have functional implications such as cell fate and mediated by
changes in the intracellular macromolecular crowding (37) or
membrane tension (44). We note that A7 cells on a higher stiff-
ness gel had less dense cytoplasm as well as smaller cell volume
in comparison to the same cells cultured on a softer gel (Fig. 3).
This confirms that cytoplasm density cannot be assumed to be
inversely proportional to the cell volume, which depends on the
untested assumption of constant cellular dry mass. We believe
that NoRI will be a useful tool for investigating mechanical regu-
lation of cell volume by providing a direct measurement of the
cytoplasm concentration and cell volume, which is also not lim-
ited to flat substrates, as are existing methods (44).

Neurohr and Amon (7) observed that senescent yeast cells
undergo a large dilution in cytoplasm (50%) measured by
SMR. However, in mammalian cells, the fragility of detached

Fig. 7. Altered protein and lipid concentrations in brain tissue from Alzheimer’s disease genetic models. (A) Protein and lipid concentration images of APP-
PS1 Alzheimer model mouse and wild-type (WT) mouse brains. (Scale bars, 100 μm.) (B) Detailed view of A. APP-PS1 brain shows senile plaques with protein-
dense core and lipid-rich corona. In the WT brain, high concentration lipid is localized to myelin fibers. (Scale bar, 30 μm.) (C) Tissue segmentation by using a
pixel classifier based on the protein and lipid concentrations and morphological features. Both wild-type and APP-PS1 images are processed by the same
parameters. Each pixel is classified as protein plaques (pink), lipid aggregates (yellow), neuropil (dark gray), myelin (green), or cell body (light gray). Ambigu-
ous pixels at the border of two classes were left unclassified (black). Protein plaques and lipid aggregates are scattered throughout the gray matter of APP-
PS1 mouse brain tissue. (D) Detailed view of C. (E) Measurement of protein and lipid concentrations of protein plaques, lipid aggregates, neuropil, and white
matter classes in the APP-PS1 image in A. (F) Quantitative analysis of protein concentration in WT (n = 1) and APP-PS1 (n = 2) and 5xFAD (n = 1), two murine
Alzheimer’s disease models. Protein concentration is shown for neuropil and protein plaque classes detected by the pixel classifier described above. A small
number of pixels in the WT were misclassified as protein plaques (open pink circle), but their protein concentration was significantly lower than that of true
protein plaques (filled pink circles). The presence of protein plaques can be quantitatively characterized by the elevated protein concentration of the protein
plaque class. Control neuropil protein 0.099 ± 0.042 g/mL, protein plaques 0.044 ± 0.056 g/mL 24 mo. APP-PS1 neuropil protein 0.106 ± 0.031 g/mL, protein
plaques 0.193 ± 0.047 g/mL 21 mo. APP-PS1 protein plaques 0.229 ± 0.055 g/mL 17 mo. 5xFAD protein plaques 0.205 ± 0.031 g/mL. (G) Quantitative analysis
of lipid concentration in the same samples as K. Lipid concentration is shown for neuropil and lipid aggregate classes identified by the pixel classification, as
described above. The presence of lipid aggregates can be detected by the high lipid concentration of lipid plaque class (filled yellow circle), which contrasts
with the low lipid concentrations (open yellow circle) seen in the WT, which has a lipid concentration in neuropil 0.089 ± 0.071 g/mL. Some pixels in WT are
misclassified as lipid aggregates but they can be discounted as revealed by their low lipid concentration 0.090 ± 0.053 g/mL 24-mo-old. APP-PS1 mouse
tissue shows lipid concentration in lipid aggregates of 0.129 ± 0.030 g/mL, which is significantly higher than that of neuropil, 0.064 ± 0.015 g/mL. The
concentrations of lipid aggregates in the 21-mo-old APP-PS1 samples and in the 16-mo-old 5xFAD mouse are similarly high at 0.129 ± 0.028 g/mL and
0.162 ± 0.040 g/mL, respectively.
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senescent cells prevented direct measurement using SMR and
genetically encoded multimeric nanoparticles (GEMs) were
instead used to assess the change in intracellular crowding from
diffusion rate measurement. Several mechanisms of how
cytoplasm density may impact cellular function have been
proposed, including dilution of unstable proteins, change of
diffusion rates and reaction kinetics, and change in DNA-to-
cytoplasm ratio, but all of these conclusions are at present
speculation. By providing direct measurement of cytoplasmic
concentration and the respective concentration of protein and
lipids, NoRI is poised to aid further studies on the role of cyto-
plasmic dilution in cellular senescence. Using NoRI, we have
confirmed that senescent mammalian cells undergo cytoplasmic
dilution, but by a much smaller magnitude than found in yeast
(Fig. 5). Furthermore, along with hypertrophy, senescent cells
are known to up-regulate lipid metabolism pathways and accu-
mulate lipid droplets (45, 48, 69). NoRI enables quantitative
characterization of senescent cell hypertrophy and the respective
contributions of protein and lipids. Using this capability, we
have already demonstrated the heterogeneity in senescence-
related lipid accumulation in different cell types. When sub-
jected to an identical treatment and culture condition, lipid
accumulation was accelerated more than protein accumulation
in senescent MDCK cells (Fig. 5F), but protein and lipid accu-
mulated proportionately in senescent A7 cells (SI Appendix,
Fig. S19G). We believe that NoRI should help resolve issues
surrounding quantitative analysis of cell growth not only in cel-
lular senescence but in a broad range of contexts, including cell
cycle and differentiation.
The difference of cytoplasmic density between cell types or

cellular states has been known for a long time and was the basis
for cell sorting by density gradient centrifugation (70, 71).
Also, some forms of active cell volume change such as shrinking
of apoptotic cells had been described (38). However, it was
only in recent years that the development of new technologies
enabled measurement of single cell cytoplasmic concentration
and brought to focus the biological regulation of cytoplasmic
concentration (7, 36). Changes in cytoplasmic concentration
can influence protein complex formation and biochemical reac-
tion rates via global tuning of mass action and diffusion rates
(72). Such global concentration tuning could have a critical
effect on the activity of signaling molecules whose concentra-
tions are close to their activation threshold (7). Osmoregulatory
components (36), macromolecular synthesis (9), and mechano-
transduction signals (37) are among potential factors that can
modulate cytoplasmic concentration. The functional signifi-
cance of cytoplasmic concentration changes may be context

dependent and vary with cell types: NoRI imaging of animal
tissues reveals the distinct concentration profiles of different cell
types (Fig. 5), heterogeneity (Fig. 6), and disease-related
changes (Fig. 7). Further characterization of cytoplasmic pro-
tein and lipid concentration of various cell types in different
health and disease states could be a fascinating subject for
future studies. Also, our initial observation in Alzheimer’s dis-
ease models in mice suggests that protein and lipid concentra-
tions could be a good quantitative disease biomarker. Finally,
the use of NoRI has reminded us of the limitations of conven-
tional histological observations of tissue. The color intensity of
histological images is usually normalized to a curve to facilitate
computer-based analysis, especially to remove the color and
intensity variation due to different staining protocols (70). By
contrast, absolute protein and lipid concentrations, as measured
by NoRI, are inherently physiologically meaningful and could
provide new information. We expect NoRI to make important
contributions in understanding the regulatory mechanism and
functional significance of cytoplasmic concentration, as well as
to open up new questions regarding the density of subcellular
compartments, tissue-specific problems, and questions on the
coordination of lipid and protein metabolism in cell size
control.

Data Availability. The raw data of figures are available from the corresponding
author upon request. The Matlab code used in this study is available at GitHub,
https://github.com/kirschnerlab/NoRI. All other study data are included in the
article and/or SI Appendix.
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